首页> 外文期刊>IEEE Transactions on Image Processing >Fast and Stable Bayesian Image Expansion Using Sparse Edge Priors
【24h】

Fast and Stable Bayesian Image Expansion Using Sparse Edge Priors

机译:使用稀疏边缘先验进行快速稳定的贝叶斯图像扩展

获取原文
获取原文并翻译 | 示例

摘要

Smoothness assumptions in traditional image expansion cause blurring of edges and other high-frequency content that can be perceptually disturbing. Previous edge-preserving approaches are either ad hoc, statistically untenable, or computationally unattractive. We propose a new edge-driven stochastic prior image model and obtain the maximum a posteriori (MAP) estimate under this model. The MAP estimate is computationally challenging since it involves the inversion of very large matrices. An efficient algorithm is presented for expansion by dyadic factors. The technique exploits diagonalization of convolutional operators under the Fourier transform, and the sparsity of our edge prior, to speed up processing. Visual and quantitative comparison of our technique with other popular methods demonstrates its potential and promise
机译:传统图像扩展中的平滑度假设会导致边缘模糊和其他可能在感知上令人不安的高频内容。先前的边缘保留方法是临时的,统计上站不住脚的或在计算上没有吸引力。我们提出了一个新的边缘驱动的随机先验图像模型,并在该模型下获得了最大后验(MAP)估计。 MAP估计在计算上具有挑战性,因为它涉及非常大矩阵的求逆。提出了一种有效的通过二进因子展开的算法。该技术利用傅立叶变换下的卷积算子的对角化以及先验边缘的稀疏性来加快处理速度。我们的技术与其他流行方法的视觉和定量比较证明了其潜力和希望

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号