...
首页> 外文期刊>Inverse Problems: An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data >Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors
【24h】

Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors

机译:使用L1型先验的高维逆问题中的稀疏贝叶斯推断的快速马尔可夫链蒙特卡罗采样

获取原文
获取原文并翻译 | 示例

摘要

Sparsity has become a key concept for solving of high-dimensional inverse problems using variational regularization techniques. Recently, using similar sparsity-constraints in the Bayesian framework for inverse problems by encoding them in the prior distribution has attracted attention. Important questions about the relation between regularization theory and Bayesian inference still need to be addressed when using sparsity promoting inversion. A practical obstacle for these examinations is the lack of fast posterior sampling algorithms for sparse, high-dimensional Bayesian inversion. Accessing the full range of Bayesian inference methods requires being able to draw samples from the posterior probability distribution in a fast and efficient way. This is usually done using Markov chain Monte Carlo (MCMC) sampling algorithms. In this paper, we develop and examine a new implementation of a single component Gibbs MCMC sampler for sparse priors relying on L1-norms. We demonstrate that the efficiency of our Gibbs sampler increases when the level of sparsity or the dimension of the unknowns is increased. This property is contrary to the properties of the most commonly applied Metropolis-Hastings (MH) sampling schemes. We demonstrate that the efficiency of MH schemes for L1-type priors dramatically decreases when the level of sparsity or the dimension of the unknowns is increased. Practically, Bayesian inversion for L1-type priors using MH samplers is not feasible at all. As this is commonly believed to be an intrinsic feature of MCMC sampling, the performance of our Gibbs sampler also challenges common beliefs about the applicability of sample based Bayesian inference.
机译:稀疏性已成为使用变分正则化技术解决高维逆问题的关键概念。最近,在贝叶斯框架中通过在先验分布中对它们进行编码而对逆问题使用相似的稀疏约束引起了人们的注意。使用稀疏性促进反演时,仍需要解决有关正则化理论与贝叶斯推理之间关系的重要问题。这些检查的一个实际障碍是缺乏用于稀疏高维贝叶斯反演的快速后验采样算法。访问贝叶斯推断方法的全部范围要求能够以快速有效的方式从后验概率分布中提取样本。通常使用马尔可夫链蒙特卡洛(MCMC)采样算法来完成此操作。在本文中,我们开发和检查了基于L1范数的稀疏先验的单组件Gibbs MCMC采样器的新实现。我们证明,当稀疏度或未知数维数增加时,吉布斯采样器的效率会提高。此属性与最常用的Metropolis-Hastings(MH)采样方案的属性相反。我们证明,当稀疏度或未知数的大小增加时,MH方案对L1型先验的效率会大大降低。实际上,使用MH采样器对L1型先验进行贝叶斯反演根本不可行。由于通常认为这是MCMC采样的固有特征,因此我们的Gibbs采样器的性能也挑战了有关基于样本的贝叶斯推断适用性的普遍观念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号