首页> 美国卫生研究院文献>other >Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations
【2h】

Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations

机译:稀疏贝叶斯近似的参数字典的Markov Chain Monte Carlo推论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parametric dictionaries can increase the ability of sparse representations to meaningfully capture and interpret the underlying signal information, such as encountered in biomedical problems. Given a mapping function from the atom parameter space to the actual atoms, we propose a sparse Bayesian framework for learning the atom parameters, because of its ability to provide full posterior estimates, take uncertainty into account and generalize on unseen data. Inference is performed with Markov Chain Monte Carlo, that uses block sampling to generate the variables of the Bayesian problem. Since the parameterization of dictionary atoms results in posteriors that cannot be analytically computed, we use a Metropolis-Hastings-within-Gibbs framework, according to which variables with closed-form posteriors are generated with the Gibbs sampler, while the remaining ones with the Metropolis Hastings from appropriate candidate-generating densities. We further show that the corresponding Markov Chain is uniformly ergodic ensuring its convergence to a stationary distribution independently of the initial state. Results on synthetic data and real biomedical signals indicate that our approach offers advantages in terms of signal reconstruction compared to previously proposed Steepest Descent and Equiangular Tight Frame methods. This paper demonstrates the ability of Bayesian learning to generate parametric dictionaries that can reliably represent the exemplar data and provides the foundation towards inferring the entire variable set of the sparse approximation problem for signal denoising, adaptation and other applications.
机译:参数字典可以提高稀疏表示的能力,以有意义地捕获和解释潜在的信号信息,例如在生物医学问题中遇到的信息。给定从原子参数空间到实际原子的映射函数,我们提出了一个稀疏的贝叶斯框架来学习原子参数,因为它具有提供完整的后验估计,将不确定性考虑在内并对未见数据进行概括的能力。使用马尔可夫链蒙特卡洛方法进行推理,该方法使用块采样来生成贝叶斯问题的变量。由于字典原子的参数化导致无法通过分析计算后验,因此我们使用Metropolis-Hastings-in-Gibbs框架,根据该框架,具有闭式后验的变量由Gibbs采样器生成,而其余变量由Metropolis生成。适当的候选生成密度产生的黑洞。我们进一步证明,相应的马尔可夫链是遍历遍历的,确保其收敛到平稳分布而与初始状态无关。综合数据和实际生物医学信号的结果表明,与先前提出的最速下降法和等角紧框架法相比,我们的方法在信号重建方面具有优势。本文证明了贝叶斯学习生成参数字典的能力,该字典可以可靠地表示示例数据,并为推断稀疏近似问题的整个变量集提供了基础,以进行信号去噪,自适应和其他应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号