首页> 外文期刊>IEEE Transactions on Image Processing >Image Coding With Geometric Wavelets
【24h】

Image Coding With Geometric Wavelets

机译:几何小波编码

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new and efficient method for low bit-rate image coding which is based on recent development in the theory of multivariate nonlinear piecewise polynomial approximation. It combines a binary space partition scheme with geometric wavelet (GW) tree approximation so as to efficiently capture curve singularities and provide a sparse representation of the image. The GW method successfully competes with state-of-the-art wavelet methods such as the EZW, SPIHT, and EBCOT algorithms. We report a gain of about 0.4 dB over the SPIHT and EBCOT algorithms at the bit-rate 0.0625 bits-per-pixels (bpp). It also outperforms other recent methods that are based on "sparse geometric representation." For example, we report a gain of 0.27 dB over the Bandelets algorithm at 0.1 bpp. Although the algorithm is computationally intensive, its time complexity can be significantely reduced by collecting a "global" GW n-term approximation to the image from a collection of GW trees, each constructed separately over tiles of the image
机译:本文基于多元非线性分段多项式逼近理论的最新发展,描述了一种新的有效的低比特率图像编码方法。它结合了二进制空间分割方案和几何小波(GW)树逼近,以便有效地捕获曲线奇异点并提供图像的稀疏表示。 GW方法与EZW,SPIHT和EBCOT算法等最新的小波方法成功竞争。我们报告,在SPIHT和EBCOT算法上,以每像素0.0625比特(bpp)的比特率获得的增益约为0.4 dB。它也优于其他基于“稀疏几何表示”的最新方法。例如,我们报告在Bandelets算法上以0.1 bpp的增益为0.27 dB。尽管该算法的计算量很大,但可以通过从GW树的集合中收集“全局” GW n项到图像的方式来显着降低其时间复杂度,每棵GW树分别在图像的图块上构建

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号