首页> 外文期刊>IEEE Transactions on Image Processing >Adaptive Local Linear Regression With Application to Printer Color Management
【24h】

Adaptive Local Linear Regression With Application to Printer Color Management

机译:自适应局部线性回归及其在打印机色彩管理中的应用

获取原文
获取原文并翻译 | 示例

摘要

Local learning methods, such as local linear regression and nearest neighbor classifiers, base estimates on nearby training samples, neighbors. Usually, the number of neighbors used in estimation is fixed to be a global “optimal” value, chosen by cross validation. This paper proposes adapting the number of neighbors used for estimation to the local geometry of the data, without need for cross validation. The term enclosing neighborhood is introduced to describe a set of neighbors whose convex hull contains the test point when possible. It is proven that enclosing neighborhoods yield bounded estimation variance under some assumptions. Three such enclosing neighborhood definitions are presented: natural neighbors, natural neighbors inclusive, and enclosing k-NN. The effectiveness of these neighborhood definitions with local linear regression is tested for estimating lookup tables for color management. Significant improvements in error metrics are shown, indicating that enclosing neighborhoods may be a promising adaptive neighborhood definition for other local learning tasks as well, depending on the density of training samples.
机译:局部学习方法(例如局部线性回归和最近邻分类器)基于附近训练样本,邻居的估计。通常,估计中使用的邻居数固定为通过交叉验证选择的全局“最佳”值。本文提出了将用于估计的邻居数调整为数据的局部几何形状,而无需交叉验证。引入术语封闭邻域是为了描述一组邻域,这些邻域的凸包在可能时包含测试点。证明在某些假设下,包围邻域产生有界估计方差。提出了三种这样的封闭邻域定义:自然邻域,包含自然邻域和封闭k-NN。测试了这些具有局部线性回归的邻域定义的有效性,以估计用于色彩管理的查找表。显示了误差度量的显着改善,表明根据训练样本的密度,封闭的邻域对于其他本地学习任务也可能是有希望的自适应邻域定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号