首页> 外文期刊>IEEE Transactions on Image Processing >Infinite Hidden Markov Models for Unusual-Event Detection in Video
【24h】

Infinite Hidden Markov Models for Unusual-Event Detection in Video

机译:视频异常事件的无限隐马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using “normal”/“typical” video. The iHMM retains a full posterior density function on all model parameters, including the number of underlying HMM states. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via Markov chain Monte Carlo and using a variational Bayes formulation. Comparisons are made to modeling based on conventional maximum-likelihood-based HMMs, as well as to Dirichlet-process-based Gaussian-mixture models.
机译:我们解决了视频序列中异常事件检测的问题。使用不变子空间分析(ISA)从视频中提取特征,并且通过无限隐马尔可夫模型(iHMM)对这些特征的时间演变特性进行建模,该模型使用“正常” /“典型”视频进行训练。 iHMM在所有模型参数(包括基础HMM状态的数量)上均保留完整的后验密度函数。如果在将相关的连续特征提交给经过训练的iHMM时观察​​到的可能性很小,则随后会检测到异常(异常事件)。 iHMM的制定采用了分级的Dirichlet过程框架。 iHMM的后验分布的评估可通过两种方式实现:通过马尔可夫链蒙特卡洛法和使用变分贝叶斯公式。比较了基于常规最大似然的HMM和基于Dirichlet过程的高斯混合模型的建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号