首页> 外文期刊>IEEE Transactions on Image Processing >Orthogonal Rotation-Invariant Moments for Digital Image Processing
【24h】

Orthogonal Rotation-Invariant Moments for Digital Image Processing

机译:用于数字图像处理的正交旋转不变矩

获取原文
获取原文并翻译 | 示例

摘要

Orthogonal rotation-invariant moments (ORIMs), such as Zernike moments, are introduced and defined on a continuous unit disk and have been proven powerful tools in optics applications. These moments have also been digitized for applications in digital image processing. Unfortunately, digitization compromises the orthogonality of the moments and, therefore, digital ORIMs are incapable of representing subtle details in images and cannot accurately reconstruct images. Typical approaches to alleviate the digitization artifact can be divided into two categories: 1) careful selection of a set of pixels as close approximation to the unit disk and using numerical integration to determine the ORIM values, and 2) representing pixels using circular shapes such that they resemble that of the unit disk and then calculating ORIMs in polar space. These improvements still fall short of preserving the orthogonality of the ORIMs. In this paper, in contrast to the previous methods, we propose a different approach of using numerical optimization techniques to improve the orthogonality. We prove that with the improved orthogonality, image reconstruction becomes more accurate. Our simulation results also show that the optimized digital ORIMs can accurately reconstruct images and can represent subtle image details.
机译:正交旋转不变矩(ORIM)(例如Zernike矩)在连续的单位圆盘上引入并定义,并且已被证明是光学应用中强大的工具。这些时刻也已经数字化,可用于数字图像处理。不幸的是,数字化损害了矩的正交性,因此,数字ORIM无法表示图像中的细微细节,因此无法准确地重建图像。减轻数字化伪影的典型方法可分为两类:1)仔细选择一组像素,使其与单位圆盘非常接近,并使用数值积分确定ORIM值; 2)使用圆形表示像素它们类似于单位磁盘,然后计算极空间中的ORIM。这些改进仍不足以保持ORIM的正交性。与以前的方法相比,本文提出了一种使用数值优化技术来改善正交性的不同方法。我们证明,随着正交性的提高,图像重建变得更加准确。我们的仿真结果还表明,优化的数字ORIM可以准确地重建图像,并可以表示细微的图像细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号