首页> 外文期刊>Image Processing, IEEE Transactions on >Towards Optimal Indexing for Relevance Feedback in Large Image Databases$^+$
【24h】

Towards Optimal Indexing for Relevance Feedback in Large Image Databases$^+$

机译:在大型图像数据库中实现针对相关反馈的最佳索引

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the need to efficiently leverage user relevance feedback in content-based retrieval from image databases, we propose a fast, clustering-based indexing technique for exact nearest-neighbor search that adapts to the Mahalanobis distance with a varying weight matrix. We derive a basic property of point-to-hyperplane Mahalanobis distance, which enables efficient recalculation of such distances as the Mahalanobis weight matrix is varied. This property is exploited to recalculate bounds on query-cluster distances via projection on known separating hyperplanes (available from the underlying clustering procedure), to effectively eliminate noncompetitive clusters from the search and to retrieve clusters in increasing order of (the appropriate) distance from the query. We compare performance with an existing variant of VA-File indexing designed for relevance feedback, and observe considerable gains.
机译:出于在图像数据库的基于内容的检索中有效利用用户相关反馈的需求的动机,我们提出了一种快速的,基于聚类的索引技术,用于精确的最近邻居搜索,该技术可适应具有变化权重矩阵的马氏距离。我们推导了点到超平面马氏距离的基本属性,当马氏距离权重矩阵发生变化时,它可以有效地重新计算此类距离。利用此属性可通过在已知的分离超平面上投影来重新计算查询集群距离的范围(可从底层聚类过程中获得),以有效地从搜索中消除非竞争性聚类,并以从(适当)距离到聚类的递增顺序检索聚类。查询。我们将性能与为相关性反馈而设计的VA文件索引的现有变体进行比较,并观察到了可观的收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号