首页> 外文期刊>Image Processing, IEEE Transactions on >The Piecewise Smooth Mumford–Shah Functional on an Arbitrary Graph
【24h】

The Piecewise Smooth Mumford–Shah Functional on an Arbitrary Graph

机译:任意图上的分段光滑Mumford-Shah函数

获取原文
获取原文并翻译 | 示例

摘要

The Mumford-Shah functional has had a major impact on a variety of image analysis problems, including image segmentation and filtering, and, despite being introduced over two decades ago, it is still in widespread use. Present day optimization of the Mumford-Shah functional is predominated by active contour methods. Until recently, these formulations necessitated optimization of the contour by evolving via gradient descent, which is known for its overdependence on initialization and the tendency to produce undesirable local minima. In order to reduce these problems, we reformulate the corresponding Mumford-Shah functional on an arbitrary graph and apply the techniques of combinatorial optimization to produce a fast, low-energy solution. In contrast to traditional optimization methods, use of these combinatorial techniques necessitates consideration of the reconstructed image outside of its usual boundary, requiring additionally the inclusion of regularization for generating these values. The energy of the solution provided by this graph formulation is compared with the energy of the solution computed via traditional gradient descent-based narrow-band level set methods. This comparison demonstrates that our graph formulation and optimization produces lower energy solutions than the traditional gradient descent based contour evolution methods in significantly less time. Finally, we demonstrate the usefulness of the graph formulation to apply the Mumford-Shah functional to new applications such as point clustering and filtering of nonuniformly sampled images.
机译:Mumford-Shah函数对包括图像分割和滤波在内的各种图像分析问题产生了重大影响,尽管在二十多年前就被引入,但它仍在广泛使用。主动轮廓法是当今Mumford-Shah函数的最优化方法。直到最近,这些公式还必须通过梯度下降来优化轮廓,而梯度下降以过分依赖初始化和产生不希望的局部最小值的趋势而闻名。为了减少这些问题,我们在任意图上重新构造了相应的Mumford-Shah函数,并应用了组合优化技术来生成快速,低能耗的解决方案。与传统的优化方法相比,这些组合技术的使用需要考虑在其通常边界之外的重建图像,此外还需要包括用于生成这些值的正则化处理。将由该图形公式提供的解的能量与通过传统的基于梯度下降的窄带能级设置方法计算出的解的能量进行比较。这种比较表明,与传统的基于梯度下降的轮廓演化方法相比,我们的图形公式化和优化产生的能量解决方案所需的时间明显更少。最后,我们证明了图形公式将Mumford-Shah函数应用于新应用程序(例如点聚类和非均匀采样图像过滤)的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号