首页> 外文期刊>Image Processing, IEEE Transactions on >CoCRF Deformable Model: A Geometric Model Driven by Collaborative Conditional Random Fields
【24h】

CoCRF Deformable Model: A Geometric Model Driven by Collaborative Conditional Random Fields

机译:CoCRF变形模型:协同条件随机场驱动的几何模型

获取原文
获取原文并翻译 | 示例

摘要

We present a hybrid framework for integrating deformable models with learning-based classification, for image segmentation with region ambiguities. We show how a region-based geometric model is coupled with conditional random fields (CRF) in a simple graphical model, such that the model evolution is driven by a dynamically updated probability field. We define the model shape with the signed distance function, while we formulate the internal energy with a $C^{1}$ continuity constraint, a shape prior, and a term that forces the zero level of the shape function towards a connected form. The latter can be seen as a term that forces different closed curves on the image plane to merge, and, therefore, our model inherently carries the property of merging regions. We calculate the image likelihood that drives the evolution using a collaborative formulation of conditional random fields (CoCRF), which is updated during the evolution in an online learning manner. The CoCRF infers class posteriors to regions with feature ambiguities by assessing the joint appearance of neighboring sites, and using the classification confidence to regulate the inference. The novelties of our approach are (i) the tight coupling of deformable models with classification, combining the estimation of smooth region boundaries with the robustness of the probabilistic region classification, (ii) the handling of feature variations, by updating the region statistics in an online learning manner, and (iii) the improvement of the region classification using our CoCRF. We demonstrate the performance of our method in a variety of images with clutter, region inhomogeneities, boundary ambiguities, and complex textures, from the zebra and cheetah examples to medical images.
机译:我们提出了一个混合框架,用于将可变形模型与基于学习的分类进行集成,以进行区域歧义的图像分割。我们展示了如何在简单的图形模型中将基于区域的几何模型与条件随机场(CRF)耦合,从而使模型演化由动态更新的概率场驱动。我们用带符号的距离函数定义模型形状,同时用$ C ^ {1} $连续性约束,形状先验和将形状函数的零级推向连接形式的项来公式化内部能量。后者可以看作是迫使图像平面上的不同闭合曲线合并的术语,因此,我们的模型固有地具有合并区域的属性。我们使用条件随机场(CoCRF)的协作公式来计算驱动演化的图像可能性,该条件在演化过程中以在线学习方式进行更新。 CoCRF通过评估相邻站点的联合外观,并使用分类置信度来调节推断,从而将具有特征模糊性的区域推断为后代。我们方法的新颖之处在于:(i)将可变形模型与分类紧密耦合,将平滑区域边界的估计与概率区域分类的鲁棒性相结合,(ii)通过更新区域统计信息来处理特征变化。在线学习方式,以及(iii)使用我们的CoCRF改进区域分类。我们从斑马和猎豹的例子到医学图像,在杂乱,区域不均匀,边界模糊和复杂纹理的各种图像中证明了我们方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号