首页> 外文期刊>Image Processing, IEEE Transactions on >Bayesian Data Fusion of Multiview Synthetic Aperture Sonar Imagery for Seabed Classification
【24h】

Bayesian Data Fusion of Multiview Synthetic Aperture Sonar Imagery for Seabed Classification

机译:用于海底分类的多视图合成孔径声纳图像的贝叶斯数据融合

获取原文
获取原文并翻译 | 示例

摘要

A Bayesian data fusion approach for seabed classification using multiview synthetic aperture sonar (SAS) imagery is proposed. The principled approach exploits all available information and results in probabilistic predictions. Each data point, corresponding to a unique 10 m $,times,$10 m area of seabed, is represented by a vector of wavelet-based features. For each seabed type, the distribution of these features is then modeled by a unique Gaussian mixture model. When multiple views of the same data point (i.e., area of seabed) are available, the views are combined via a joint likelihood calculation. The end result of this Bayesian formulation is the posterior probability that a given data point belongs to each seabed type. It is also shown how these posterior probabilities can be exploited in a form of entropy-based active-learning to determine the most useful additional data to acquire. Experimental results of the proposed multiview classification framework are shown on a large data set of real, multiview SAS imagery spanning more than 2 km $^2$ of seabed.
机译:提出了一种使用多视图合成孔径声纳(SAS)图像进行海床分类的贝叶斯数据融合方法。原则性方法利用了所有可用信息,并得出了概率预测。每个数据点对应于一个独特的10 m $ x 10 m的海底区域,由基于小波的特征向量表示。对于每种海床类型,然后通过唯一的高斯混合模型对这些特征的分布进行建模。当可使用同一数据点的多个视图(即海床区域)时,可通过联合似然计算将这些视图合并。贝叶斯公式的最终结果是给定数据点属于每种海床类型的后验概率。还显示了如何以基于熵的主动学习的形式利用这些后验概率来确定要获取的最有用的附加数据。所提出的多视图分类框架的实验结果显示在跨越多于2 km 2的海底真实,多视图SAS图像的大型数据集上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号