首页> 外文期刊>IEEE Transactions on Image Processing >Down-Sampling Design in DCT Domain With Arbitrary Ratio for Image/Video Transcoding
【24h】

Down-Sampling Design in DCT Domain With Arbitrary Ratio for Image/Video Transcoding

机译:DCT域中具有任意比率的图像/视频转码下采样设计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a designing framework for down-sampling compressed images/video with arbitrary ratio in the discrete cosine transform (DCT) domain. In this framework, we first derive a set of DCT-domain down-sampling methods which can be represented by a linear transform with double-sided matrix multiplication (LTDS) in the DCT domain and show that the set contains a wide range of methods with various complexity and visual quality. Then, for a preselected spatial-domain down-sampling method, we formulate an optimization problem for finding an LTDS to approximate the given spatial-domain down-sampling method for a trade-off between the visual quality and the complexity. By modeling LTDS as a multiple layer network, a so-called structural learning with forgetting algorithm is then applied to solve the optimization problem. The proposed framework has been applied to discover optimal LTDSs corresponding to a spatial down-sampling method with Butterworth low-pass filtering and bicubic interpolation. Experimental results show that the resulting LTDS achieves a significant reduction on the complexity when compared with other methods in the literature with similar visual quality.
机译:本文提出了一种在离散余弦变换(DCT)域中对任意比例压缩图像/视频进行下采样的设计框架。在此框架中,我们首先导出了一组DCT域下采样方法,这些方法可以用DCT域中带有双面矩阵乘法(LTDS)的线性变换来表示,并表明该组包含多种方法,其中各种复杂性和视觉质量。然后,对于预选的空间域下采样方法,我们提出了一个优化问题,用于寻找LTDS来近似给定的空间域下采样方法,以在视觉质量和复杂度之间进行权衡。通过将LTDS建模为多层网络,然后应用具有遗忘算法的所谓结构学习来解决优化问题。所提出的框架已被用于发现与具有Butterworth低通滤波和双三次插值的空间下采样方法相对应的最优LTDS。实验结果表明,与文献中具有类似视觉质量的其他方法相比,所得的LTDS显着降低了复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号