首页> 外文期刊>IEEE Transactions on Image Processing >Event-by-Event Image Reconstruction From List-Mode PET Data
【24h】

Event-by-Event Image Reconstruction From List-Mode PET Data

机译:从列表模式PET数据逐事件图像重建

获取原文
获取原文并翻译 | 示例

摘要

This paper adapts the classical list-mode OSEM and the globally convergent list-mode COSEM methods to the special case of singleton subsets. The image estimate is incrementally updated for each coincidence event measured by the PET scanner. Events are used as soon as possible to improve the current image estimate, and, therefore, the convergence speed toward the maximum-likelihood solution is accelerated. An alternative online formulation of the list-mode COSEM algorithm is proposed first. This method saves memory resources by re-computing previous incremental image contributions while processing a new pass over the complete dataset. This online expectation-maximization principle is applied to the list-mode OSEM method, as well. Image reconstructions have been performed from a simulated dataset for the NCAT torso phantom and from a clinical dataset. Results of the classical and event-by-event list-mode algorithms are discussed in a systematic and quantitative way.
机译:本文将经典的列表模式OSEM和全局收敛的列表模式COSEM方法应用于单例子集的特殊情况。对于由PET扫描仪测量的每个巧合事件,图像估计值将进行增量更新。尽快使用事件来改善当前图像估计,因此,加快了向最大似然解的收敛速度。首先提出了列表模式COSEM算法的替代在线公式。该方法通过重新计算以前的增量图像贡献,同时在整个数据集上处理新遍次,从而节省了内存资源。这种在线期望最大化原则也适用于列表模式OSEM方法。已从NCAT躯干体模的模拟数据集和临床数据集进行了图像重建。以系统和定量的方式讨论了经典和逐事件列表模式算法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号