首页> 外文期刊>Image Processing, IEEE Transactions on >A Novel Rotationally Invariant Region-Based Hidden Markov Model for Efficient 3-D Image Segmentation
【24h】

A Novel Rotationally Invariant Region-Based Hidden Markov Model for Efficient 3-D Image Segmentation

机译:一种新型的基于旋转不变区域的隐马尔可夫模型,用于有效的3D图像分割

获取原文
获取原文并翻译 | 示例

摘要

We present a novel 3-D region-based hidden Markov model (rbHMM) for efficient unsupervised 3-D image segmentation. Our contribution is twofold. First, rbHMM employs a more efficient representation of the image data than current state-of-the-art HMM-based approaches that are based on either voxels or rectangular lattices/grids, thus resulting in a faster optimization process. Second, our proposed novel tree-structured parameter estimation algorithm for the rbHMM provides a locally optimal data labeling that is invariant to object rotation, which is a highly valuable property in segmentation tasks, especially in medical imaging where the segmentation results need to be independent of patient positioning in scanners in order to minimize methodological variability in data analysis. We demonstrate the advantages of our proposed technique over grid-based HMMs by validating on synthetic images of geometric shapes as well as both simulated and clinical brain MRI scans. For the geometric shapes data, our method produced consistently accurate segmentation results that were also invariant to object rotation. For the brain MRI data, our white matter and gray matter segmentation resulted in substantially higher robustness and accuracy levels with improved Dice similarity indices of 4.60% $({p}=0.0022)$ and 7.71% $({p}<0.0001)$ , respectively.
机译:我们提出了一种新型的基于3D区域的隐马尔可夫模型(rbHMM),用于有效的无监督3D图像分割。我们的贡献是双重的。首先,与基于体素或矩形晶格/网格的当前基于HMM的最新技术相比,rbHMM采用了更有效的图像数据表示方式,从而导致了更快的优化过程。其次,我们针对rbHMM提出的新颖的树状结构参数估计算法提供了一种局部最优的数据标签,该数据标签对于对象旋转是不变的,这在分割任务中,尤其是在医疗成像中,分割结果必须与患者在扫描仪中的位置,以最大程度地减少数据分析中的方法变异性。通过验证几何形状的合成图像以及模拟和临床脑部MRI扫描,我们证明了我们提出的技术优于基于网格的HMM的优势。对于几何形状数据,我们的方法产生了始终如一的精确分割结果,该结果对于对象旋转也不变。对于脑部MRI数据,我们的白质和灰质分割带来了显着更高的鲁棒性和准确性,而Dice相似性指标分别提高了4.60%({p} = 0.0022)$和7.71%$({p} <0.0001)$ , 分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号