首页> 外文期刊>Image Processing, IEEE Transactions on >A Low False Negative Filter for Detecting Rare Bird Species From Short Video Segments Using a Probable Observation Data Set-Based EKF Method
【24h】

A Low False Negative Filter for Detecting Rare Bird Species From Short Video Segments Using a Probable Observation Data Set-Based EKF Method

机译:一种低假阴性滤波器,可使用基于观测数据集的EKF方法从短视频片段中检测稀有鸟类

获取原文
获取原文并翻译 | 示例

摘要

We report a new filter to assist the search for rare bird species. Since a rare bird only appears in front of a camera with very low occurrence (e.g., less than ten times per year) for very short duration (e.g., less than a fraction of a second), our algorithm must have a very low false negative rate. We verify the bird body axis information with the known bird flying dynamics from the short video segment. Since a regular extended Kalman filter (EKF) cannot converge due to high measurement error and limited data, we develop a novel probable observation data set (PODS)-based EKF method. The new PODS-EKF searches the measurement error range for all probable observation data that ensures the convergence of the corresponding EKF in short time frame. The algorithm has been extensively tested using both simulated inputs and real video data of four representative bird species. In the physical experiments, our algorithm has been tested on rock pigeons and red-tailed hawks with 119 motion sequences. The area under the ROC curve is 95.0%. During the one-year search of ivory-billed woodpeckers, the system reduces the raw video data of 29.41TB to only 146.7 MB (reduction rate 99.9995%).
机译:我们报告了一个新的过滤器,以协助寻找稀有鸟类。由于一只稀有鸟类只在极短的时间内(例如,不到一秒钟的时间)出现在发生率极低(例如,每年少于十次)的镜头前,因此我们的算法必须具有非常低的假阴性率率。我们使用短视频片段中已知的鸟类飞行动力学来验证鸟类的身体轴信息。由于常规的扩展卡尔曼滤波器(EKF)由于高测量误差和有限的数据而无法收敛,因此我们开发了一种基于新的可能观测数据集(PODS)的EKF方法。新的PODS-EKF在所有可能的观测数据中搜索测量误差范围,以确保相应的EKF在短时间内收敛。该算法已经使用模拟输入和四种代表性鸟类的真实视频数据进行了广泛测试。在物理实验中,我们的算法已经在具有119个运动序列的原鸽和红尾鹰上进行了测试。 ROC曲线下的面积为95.0%。在一年的象牙嘴啄木鸟搜索过程中,该系统将29.41TB的原始视频数据减少到仅146.7 MB(减少率99.9995%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号