首页> 外文期刊>Image Processing, IEEE Transactions on >On High-Order Denoising Models and Fast Algorithms for Vector-Valued Images
【24h】

On High-Order Denoising Models and Fast Algorithms for Vector-Valued Images

机译:向量值图像的高阶降噪模型和快速算法

获取原文
获取原文并翻译 | 示例

摘要

Variational techniques for gray-scale image denoising have been deeply investigated for many years; however, little research has been done for the vector-valued denoising case and the very few existent works are all based on total-variation regularization. It is known that total-variation models for denoising gray-scaled images suffer from staircasing effect and there is no reason to suggest this effect is not transported into the vector-valued models. High-order models, on the contrary, do not present staircasing. In this paper, we introduce three high-order and curvature-based denoising models for vector-valued images. Their properties are analyzed and a fast multigrid algorithm for the numerical solution is provided. AMS subject classifications: 68U10, 65F10, 65K10.
机译:多年来,对灰度图像去噪的各种技术进行了深入研究。但是,对于矢量值去噪的情况,研究很少,并且现有的工作很少都基于总变分正则化。众所周知,用于对灰度图像进行去噪的总变化模型会受到阶梯效应的影响,没有理由表明这种效应不会传递到矢量值模型中。相反,高阶模型不会出现楼梯。在本文中,我们为矢量值图像介绍了三种基于高阶和基于曲率的降噪模型。分析了它们的性质,并提供了用于数值解的快速多重网格算法。 AMS主题分类:68U10、65F10、65K10。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号