首页> 外文期刊>Image Processing, IEEE Transactions on >Blind and Semi-Blind Deblurring of Natural Images
【24h】

Blind and Semi-Blind Deblurring of Natural Images

机译:自然图像的盲和半盲去模糊

获取原文
获取原文并翻译 | 示例

摘要

A method for blind image deblurring is presented. The method only makes weak assumptions about the blurring filter and is able to undo a wide variety of blurring degradations. To overcome the ill-posedness of the blind image deblurring problem, the method includes a learning technique which initially focuses on the main edges of the image and gradually takes details into account. A new image prior, which includes a new edge detector, is used. The method is able to handle unconstrained blurs, but also allows the use of constraints or of prior information on the blurring filter, as well as the use of filters defined in a parametric manner. Furthermore, it works in both single-frame and multiframe scenarios. The use of constrained blur models appropriate to the problem at hand, and/or of multiframe scenarios, generally improves the deblurring results. Tests performed on monochrome and color images, with various synthetic and real-life degradations, without and with noise, in single-frame and multiframe scenarios, showed good results, both in subjective terms and in terms of the increase of signal to noise ratio (ISNR) measure. In comparisons with other state of the art methods, our method yields better results, and shows to be applicable to a much wider range of blurs.
机译:提出了一种用于图像去模糊的方法。该方法仅对模糊滤波器做出较弱的假设,并且能够消除各种各样的模糊降级。为了克服盲图像去模糊问题的不适定性,该方法包括学习技术,该学习技术最初专注于图像的主边缘并且逐渐考虑细节。使用包括新边缘检测器的新图像先验。该方法能够处理不受约束的模糊,但也允许使用约束或模糊滤波器上的先验信息,以及使用以参数方式定义的滤波器。此外,它适用于单帧和多帧方案。使用适合于当前问题和/或多帧场景的约束模糊模型通常可以改善去模糊效果。在单帧和多帧场景中,在单色和彩色图像上进行的,具有各种合成和现实退化,无噪声和有噪声的测试,无论在主观方面还是在信噪比增加方面均显示出良好的结果( ISNR)度量。与其他现有技术方法相比,我们的方法产生了更好的结果,并显示适用于更大范围的模糊。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号