首页> 外文期刊>Image Processing, IEEE Transactions on >Effective Level Set Image Segmentation With a Kernel Induced Data Term
【24h】

Effective Level Set Image Segmentation With a Kernel Induced Data Term

机译:具有内核诱导数据项的有效水平集图像分割

获取原文
获取原文并翻译 | 示例

摘要

This study investigates level set multiphase image segmentation by kernel mapping and piecewise constant modeling of the image data thereof. A kernel function maps implicitly the original data into data of a higher dimension so that the piecewise constant model becomes applicable. This leads to a flexible and effective alternative to complex modeling of the image data. The method uses an active curve objective functional with two terms: an original term which evaluates the deviation of the mapped image data within each segmentation region from the piecewise constant model and a classic length regularization term for smooth region boundaries. Functional minimization is carried out by iterations of two consecutive steps: 1) minimization with respect to the segmentation by curve evolution via Euler-Lagrange descent equations and 2) minimization with respect to the regions parameters via fixed point iterations. Using a common kernel function, this step amounts to a mean shift parameter update. We verified the effectiveness of the method by a quantitative and comparative performance evaluation over a large number of experiments on synthetic images, as well as experiments with a variety of real images such as medical, satellite, and natural images, as well as motion maps.
机译:本研究通过核映射及其图像数据的分段常数建模研究水平集多相图像分割。内核函数将原始数据隐式映射为更高维度的数据,从而使分段常数模型变得适用。这导致了对图像数据的复杂建模的灵活有效的替代方案。该方法使用具有两个项的主动曲线目标函数:一个原始项,用于评估每个分割区域内的映射图像数据与分段常数模型之间的偏差;一个经典长度正则项,用于平滑区域边界。通过两个连续步骤的迭代来执行功能最小化:1)通过Euler-Lagrange下降方程通过曲线演化对分段进行最小化,以及2)通过定点迭代对区域参数进行最小化。使用通用内核函数,此步骤等同于平均移位参数更新。我们通过对合成图像进行大量实验以及对各种真实图像(例如医学,卫星和自然图像以及运动图)进行实验的定量和比较性能评估,验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号