首页> 外文期刊>Image Processing, IEEE Transactions on >Bayesian Compressive Sensing Using Laplace Priors
【24h】

Bayesian Compressive Sensing Using Laplace Priors

机译:使用拉普拉斯先验的贝叶斯压缩感知

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the sparsity of the unknown signal. We describe the relationship among a number of sparsity priors proposed in the literature, and show the advantages of the proposed model including its high degree of sparsity. Moreover, we show that some of the existing models are special cases of the proposed model. Using our model, we develop a constructive (greedy) algorithm designed for fast reconstruction useful in practical settings. Unlike most existing CS reconstruction methods, the proposed algorithm is fully automated, i.e., the unknown signal coefficients and all necessary parameters are estimated solely from the observation, and, therefore, no user-intervention is needed. Additionally, the proposed algorithm provides estimates of the uncertainty of the reconstructions. We provide experimental results with synthetic 1-D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach.
机译:在本文中,我们使用贝叶斯框架对压缩感测(CS)问题的组件进行建模,即信号采集过程,未知信号系数以及信号和噪声的模型参数。在建模未知信号的稀疏性之前,我们利用拉普拉斯的分层形式。我们描述了文献中提出的许多稀疏先验之间的关系,并展示了所提出模型的优点包括其高度稀疏性。此外,我们证明了一些现有模型是所提出模型的特例。使用我们的模型,我们开发了一种构造性(贪婪)算法,旨在在实际环境中进行快速重建。与大多数现有的CS重建方法不同,所提出的算法是完全自动化的,即仅根据观察结果估计未知信号系数和所有必要参数,因此不需要用户干预。另外,提出的算法提供了重构不确定性的估计。我们提供合成一维信号和图像的实验结果,并与最新的CS重建算法进行比较,以证明所提出方法的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号