首页> 外文学位 >Exploiting prior knowledge in compressed sensing wireless ECG systems.
【24h】

Exploiting prior knowledge in compressed sensing wireless ECG systems.

机译:利用压缩感知无线ECG系统中的先验知识。

获取原文
获取原文并翻译 | 示例

摘要

Wireless body area networks promise to revolutionize health monitoring by allowing the transition from centralized health care services to ubiquitous and pervasive health monitoring in every-day life. One of the major challenges in the design of such systems is the energy consumption as wireless body area networks are battery-powered. Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls behind the performance attained by state-of-the-art wavelet-based algorithms. This is mainly because current CS-based algorithms exploit only the sparsity of the signal, ignoring important signal structure information that can be known a priori and lead to enhanced reconstruction results.;This dissertation presents methods to exploit prior knowledge of the ECG in order to improve the reconstruction quality and to increase the compression rates offered by current CS-based algorithms. First, we describe an algorithm that exploits prior information about the wavelet dependencies across scales and the high fraction of common support of the wavelet coefficients of consecutive ECG segments.;One of the main challenges in the reconstruction of ECG signals via CS-based algorithms is the recovery of the small-magnitude wavelet coefficients. This dissertation also presents a weighted ℓ1 minimization algorithm, based on a maximum a posteriori (MAP) approach, that exploits the exponentially decaying magnitude of the detail coefficients across scales and the accumulation of signal energy in the approximation subband.;In real scenarios, ECG recordings are often corrupted by artifacts. This dissertation also presents a robust reconstruction method for ECG signals in the presence of electromyographic noise. To achieve this objective, robust statistics are used to develop appropriate methods addressing the problem of electromyographic noise, which can be modeled as impulsive noise.;Most prior work in CS ECG has employed analytical sparsifying transforms such as wavelets. Another contribution of this dissertation is to adaptively learn a sparsifying transform (overcomplete dictionary) that exploits the multi-scale sparse representation of ECG signals. By calculating subdictionaries at different data scales, we are able to exploit the correlation within each wavelet subband and, subsequently, represent the data in a more efficient manner.;Generic sparsity models that are not tied to a specified structure are also explored in this dissertation. More precisely, restricted Boltzmann machines and deep belief networks are employed to model the sparsity pattern of ECG signals with the goal of exploiting higher-order statistical dependencies between sparse coefficients.;The effectiveness of the proposed algorithms is demonstrated on real ECG signals from the MIT-BIH Arrhythmia Database. Results show that the proposed algorithms require fewer measurements and offer superior reconstruction accuracy than existing CS-based methods for ECG compression.
机译:无线人体局域网有望通过允许从集中式医疗保健服务过渡到日常生活中无处不在的无处不在的健康监控,来彻底改变健康监控。这种系统设计中的主要挑战之一是由于无线人体局域网由电池供电而导致的能耗。心电学的最新结果表明,压缩感测(CS)是降低无线人体局域网中用于心电图(ECG)监测的能量消耗的有前途的工具。但是,就压缩率和ECG的重建质量而言,当前基于CS的算法的性能仍落后于最新的基于小波的算法所获得的性能。这主要是因为当前基于CS的算法仅利用信号的稀疏性,而忽略了先验已知的重要信号结构信息,并导致了增强的重建结果。;本论文提出了利用ECG的先验知识的方法。改善重建质量并提高当前基于CS的算法提供的压缩率。首先,我们描述了一种算法,该算法利用了跨尺度的小波相关性的先验信息以及连续ECG片段的小波系数的较高公共支持率。;通过基于CS的算法重建ECG信号的主要挑战之一是小幅度小波系数的恢复。本文还提出了一种基于最大后验(MAP)方法的加权ℓ 1最小化算法,该算法利用了跨尺度的细节系数的指数衰减幅度以及近似子带中信号能量的积累。 ,ECG记录通常会被伪影破坏。本文还提出了一种在存在肌电图噪声的情况下针对ECG信号的鲁棒重建方法。为了实现此目标,使用可靠的统计数据来开发适当的方法来解决肌电噪声的问题,可以将其建模为脉冲噪声。; CS ECG的大多数先前工作都是采用分析稀疏变换,例如小波。本论文的另一个贡献是自适应地学习了稀疏变换(超完备字典),该变换利用了ECG信号的多尺度稀疏表示。通过计算不同数据尺度下的子字典,我们能够利用每个小波子带内的相关性,并随后以更有效的方式表示数据。;本文还探索了与特定结构无关的通用稀疏模型。更准确地说,使用受限的玻尔兹曼机器和深度信度网络对ECG信号的稀疏模式进行建模,以利用稀疏系数之间的高阶统计相关性。;在MIT的真实ECG信号上证明了该算法的有效性。 -BIH心律失常数据库。结果表明,与现有的基于CS的ECG压缩方法相比,所提出的算法所需的测量次数更少,并且重构精度更高。

著录项

  • 作者

    Polania, Luisa F.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Electrical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号