首页> 外文期刊>Image Processing, IEEE Transactions on >Scalable Feature Extraction for Coarse-to-Fine JPEG 2000 Image Classification
【24h】

Scalable Feature Extraction for Coarse-to-Fine JPEG 2000 Image Classification

机译:粗到精细JPEG 2000图像分类的可伸缩特征提取

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the issues of analyzing and classifying JPEG 2000 code-streams. An original representation, called integral volume, is first proposed to compute local image features progressively from the compressed code-stream, on any spatial image area, regardless of the code-blocks borders. Then, a JPEG 2000 classifier is presented that uses integral volumes to learn an ensemble of randomized trees. Several classification tasks are performed on various JPEG 2000 image databases and results are in the same range as the ones obtained in the literature with noncompressed versions of these databases. Finally, a cascade of such classifiers is considered, in order to specifically address the image retrieval issue, i.e., bi-class problems characterized by a highly skewed distribution. An efficient way to learn and optimize such cascade is proposed. We show that staying in a JPEG 2000 framework, initially seen as a constraint to avoid heavy decoding operations, is actually an advantage as it can benefit from the multiresolution and multilayer paradigms inherently present in this compression standard. In particular, unlike other existing cascaded retrieval systems, the features used along our cascade are increasingly discriminant and lead therefore to a better tradeoff of complexity versus performance.
机译:在本文中,我们解决了对JPEG 2000代码流进行分析和分类的问题。首先提出一种称为积分体积的原始表示形式,以在任何空间图像区域上从压缩代码流逐步计算局部图像特征,而与代码块边界无关。然后,提出了一个JPEG 2000分类器,该分类器使用整数体积学习一组随机树。在各种JPEG 2000图像数据库上执行了几种分类任务,其结果与文献中使用这些数据库的未压缩版本的结果相同。最后,考虑级联这样的分类器,以便专门解决图像检索问题,即以高度偏斜分布为特征的双类别问题。提出了一种学习和优化这种级联的有效方法。我们证明,保留在JPEG 2000框架中(最初被视为避免繁重的解码操作的一种约束)实际上是一个优势,因为它可以从此压缩标准中固有的多分辨率和多层范例中受益。特别是,与其他现有的级联检索系统不同,沿我们的级联使用的功能越来越具有区别性,因此可以更好地权衡复杂性与性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号