首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >On the influence of feature selection and extraction for the classification of steganalysis based on the JPEG image
【24h】

On the influence of feature selection and extraction for the classification of steganalysis based on the JPEG image

机译:特征选择和提取对基于JPEG图像的隐写分析分类的影响

获取原文
获取原文并翻译 | 示例

摘要

Steganalysis analyzes the existence of embedded secret information in cover. It can be divided into two categories, special steganalysis and blind steganalysis, according to the feature extraction and classification. Steganalysis can be assigned to classification problems, which based on the training set to determine the suspicious cover's class label. Essentially, it is two-class problem in pattern recognition or machine learning. Selecting the right feature for classification is very important and difficult. There has been little research that deals with the feature selection and feature extraction problem with specific respect to steganalysis. This paper studies the influence of selected feature to the steganalysis. It is crucial that selected features are very sensitive to the embedding changes, but insensitive to the image content. First, the basic framework is described for image steganalysis, which includes five parts: training/testing images set, feature search/selection, feature extraction/feature vectors, training classifier, training model and classifier parameter estimator. We then classify the existing feature according to the domain which belonging to. Finally, we do the experiment to compare the performance of different feature by use different classifier, such as ANN and SVM. Through our experiment, although we use small data set, but we find out the optimized features for classification.
机译:隐写分析分析了掩体中嵌入的秘密信息的存在。根据特征提取和分类,可以分为特殊隐写分析和盲隐写分析两类。可以将隐写分析分配给分类问题,然后根据训练集确定可疑掩护的类别标签。本质上,这是模式识别或机器学习中的两类问题。选择正确的分类功能非常重要且困难。很少有研究针对隐写分析方面的特征选择和特征提取问题。本文研究所选特征对隐写分析的影响。至关重要的是,所选特征对嵌入更改非常敏感,但对图像内容不敏感。首先,描述了图像隐写分析的基本框架,包括五个部分:训练/测试图像集,特征搜索/选择,特征提取/特征向量,训练分类器,训练模型和分类器参数估计器。然后,根据所属领域对现有特征进行分类。最后,我们进行实验以使用不同的分类器(例如ANN和SVM)比较不同功能的性能。通过我们的实验,尽管我们使用的数据集较小,但是我们发现了用于分类的优化功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号