首页> 外文期刊>Image Processing, IEEE Transactions on >Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization
【24h】

Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization

机译:基于混合正则化的并行近邻图像复原算法

获取原文
获取原文并翻译 | 示例

摘要

Regularization approaches have demonstrated their effectiveness for solving ill-posed problems. However, in the context of variational restoration methods, a challenging question remains, namely how to find a good regularizer. While total variation introduces staircase effects, wavelet-domain regularization brings other artefacts, e.g., ringing. However, a tradeoff can be made by introducing a hybrid regularization including several terms not necessarily acting in the same domain (e.g., spatial and wavelet transform domains). While this approach was shown to provide good results for solving deconvolution problems in the presence of additive Gaussian noise, an important issue is to efficiently deal with this hybrid regularization for more general noise models. To solve this problem, we adopt a convex optimization framework where the criterion to be minimized is split in the sum of more than two terms. For spatial domain regularization, isotropic or anisotropic total variation definitions using various gradient filters are considered. An accelerated version of the Parallel Proximal Algorithm is proposed to perform the minimization. Some difficulties in the computation of the proximity operators involved in this algorithm are also addressed in this paper. Numerical experiments performed in the context of Poisson data recovery, show the good behavior of the algorithm as well as promising results concerning the use of hybrid regularization techniques.
机译:正则化方法已经证明了其解决不适定问题的有效性。然而,在变分复原方法的背景下,仍然存在一个具有挑战性的问题,即如何找到一个好的正则化器。虽然总变化会引入阶梯效应,但小波域正则化会带来其他伪像,例如振铃。但是,可以通过引入混合正则化来进行权衡,该混合正则化包括不一定在相同域(例如,空间域和小波变换域)中起作用的若干项。虽然该方法显示出在存在加性高斯噪声的情况下解决反卷积问题提供了良好的结果,但重要的问题是对于更通用的噪声模型有效地处理这种混合正则化。为了解决这个问题,我们采用了凸优化框架,其中将要最小化的准则划分为两个以上的和。对于空间域正则化,考虑使用各种梯度滤波器的各向同性或各向异性总变化定义。提出了并行近端算法的加速版本以执行最小化。本文还解决了该算法所涉及的邻近算子的一些计算难题。在Poisson数据恢复的背景下进行的数值实验表明,该算法具有良好的性能,并且在混合正则化技术的使用方面具有令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号