首页> 外文期刊>Image Processing, IEEE Transactions on >Smoothlets—Multiscale Functions for Adaptive Representation of Images
【24h】

Smoothlets—Multiscale Functions for Adaptive Representation of Images

机译:冰沙—用于图像自适应表示的多尺度函数

获取原文
获取原文并翻译 | 示例

摘要

In this paper a special class of functions called smoothlets is presented. They are defined as a generalization of wedgelets and second-order wedgelets. Unlike all known geometrical methods used in adaptive image approximation, smoothlets are continuous functions. They can adapt to location, size, rotation, curvature, and smoothness of edges. The M-term approximation of smoothlets is $O(M^{-3})$ . In this paper, an image compression scheme based on the smoothlet transform is also presented. From the theoretical considerations and experiments, both described in the paper, it follows that smoothlets can assure better image compression than the other known adaptive geometrical methods, namely, wedgelets and second-order wedgelets.
机译:在本文中,提出了一种特殊类型的函数,称为Smoothlets。它们被定义为楔形和二阶楔形的一般化。与自适应图像逼近中使用的所有已知几何方法不同,圆滑是连续函数。它们可以适应边缘的位置,大小,旋转,曲率和平滑度。圆滑的M项近似值为 $ O(M ^ {-3})$ 。本文还提出了一种基于圆滑变换的图像压缩方案。从本文中都描述的理论考虑和实验,可以得出结论,与其他已知的自适应几何方法(楔形和二阶楔形)相比,平滑片可以确保更好的图像压缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号