首页> 外文期刊>Image Processing, IEEE Transactions on >A Hybrid Approach to Detect and Localize Texts in Natural Scene Images
【24h】

A Hybrid Approach to Detect and Localize Texts in Natural Scene Images

机译:一种在自然场景图像中检测和定位文本的混合方法

获取原文
获取原文并翻译 | 示例

摘要

Text detection and localization in natural scene images is important for content-based image analysis. This problem is challenging due to the complex background, the non-uniform illumination, the variations of text font, size and line orientation. In this paper, we present a hybrid approach to robustly detect and localize texts in natural scene images. A text region detector is designed to estimate the text existing confidence and scale information in image pyramid, which help segment candidate text components by local binarization. To efficiently filter out the non-text components, a conditional random field (CRF) model considering unary component properties and binary contextual component relationships with supervised parameter learning is proposed. Finally, text components are grouped into text lines/words with a learning-based energy minimization method. Since all the three stages are learning-based, there are very few parameters requiring manual tuning. Experimental results evaluated on the ICDAR 2005 competition dataset show that our approach yields higher precision and recall performance compared with state-of-the-art methods. We also evaluated our approach on a multilingual image dataset with promising results.
机译:自然场景图像中的文本检测和本地化对于基于内容的图像分析非常重要。由于背景复杂,照明不均匀,文本字体,大小和行方向的变化,此问题具有挑战性。在本文中,我们提出了一种混合方法来稳健地检测和定位自然场景图像中的文本。设计文本区域检测器以估计图像金字塔中文本的现有置信度和比例信息,这有助于通过局部二值化来分割候选文本成分。为了有效地过滤掉非文本成分,提出了一种在监督参数学习的基础上考虑一元成分属性和二进制上下文成分关系的条件随机字段(CRF)模型。最后,使用基于学习的能量最小化方法将文本成分分组为文本行/单词。由于这三个阶段都是基于学习的,因此很少有参数需要手动调整。在ICDAR 2005竞争数据集上评估的实验结果表明,与最新方法相比,我们的方法具有更高的精度和召回性能。我们还在多语言图像数据集上评估了我们的方法,并取得了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号