首页> 外文期刊>Image Processing, IEEE Transactions on >Diffuse Prior Monotonic Likelihood Ratio Test for Evaluation of Fused Image Quality Measures
【24h】

Diffuse Prior Monotonic Likelihood Ratio Test for Evaluation of Fused Image Quality Measures

机译:弥散先验单调似然比检验用于评估融合图像质量测度

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel method to score how well proposed fused image quality measures (FIQMs) indicate the effectiveness of humans to detect targets in fused imagery. The human detection performance is measured via human perception experiments. A good FIQM should relate to perception results in a monotonic fashion. The method computes a new diffuse prior monotonic likelihood ratio (DPMLR) to facilitate the comparison of the $H_1$ hypothesis that the intrinsic human detection performance is related to the FIQM via a monotonic function against the null hypothesis that the detection and image quality relationship is random. The paper discusses many interesting properties of the DPMLR and demonstrates the effectiveness of the DPMLR test via Monte Carlo simulations. Finally, the DPMLR is used to score FIQMs with test cases considering over 35 scenes and various image fusion algorithms.
机译:本文介绍了一种新方法,可以对提议的融合图像质量度量(FIQM)很好地表明人类检测融合图像中目标的有效性进行评分。人体检测性能是通过人体感知实验测量的。一个好的FIQM应该以单调的方式与感知结果相关。该方法计算新的弥散先验单调似然比(DPMLR),以便于将固有人类检测性能通过单调函数与FIQM相关的$ H_1 $假设与检测和图像质量关系为零的零假设进行比较。随机。本文讨论了DPMLR的许多有趣特性,并通过蒙特卡洛模拟演示了DPMLR测试的有效性。最后,使用DPMLR对FIQM进行评分,考虑到超过35个场景和各种图像融合算法的测试案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号