首页> 外文期刊>Image Processing, IEEE Transactions on >Partial Differential Equation-Based Approach for Empirical Mode Decomposition: Application on Image Analysis
【24h】

Partial Differential Equation-Based Approach for Empirical Mode Decomposition: Application on Image Analysis

机译:基于偏微分方程的经验模态分解方法:在图像分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called “sifting process” used in the original Huang''s EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.
机译:经验模式分解(EMD)算法的主要问题是缺乏理论框架。因此,很难描述和评估这种方法。在本文中,我们建议在二维情况下,使用替代的实现方式来替代原始Huang的EMD方法中使用的所谓“筛选过程”的算法定义。 Niang在之前的工作中(2005年和2007年)提出了这种方法,特别是基于偏微分方程(PDE)的方法,该方法依赖于基于非线性扩散的滤波过程来解决均值包络估计问题。在一维情况下,与最近的EMD算法版本相比,基于PDE的方法的效率也得到了证明。最近,已经提出了EMD方法的几种2-D扩展。尽管付出了一些努力,但用于EMD的2D版本似乎表现不佳,非常耗时。因此,在本文中,广泛描述了基于PDE的方法对二维空间的扩展。这种方法已应用于信号和图像分解的情况。获得的结果证实了新的基于PDE的筛选过程对于分解各种数据的有用性。在图像分解的情况下提供了一些结果。该方法的有效性鼓励其在许多信号和图像应用中使用,例如降噪,去趋势或纹理分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号