首页> 外文期刊>Image Processing, IEEE Transactions on >Efficient Image Denoising Method Based on a New Adaptive Wavelet Packet Thresholding Function
【24h】

Efficient Image Denoising Method Based on a New Adaptive Wavelet Packet Thresholding Function

机译:基于新的自适应小波包阈值函数的高效图像降噪方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a statistically optimum adaptive wavelet packet (WP) thresholding function for image denoising based on the generalized Gaussian distribution. It applies computationally efficient multilevel WP decomposition to noisy images to obtain the best tree or optimal wavelet basis, utilizing Shannon entropy. It selects an adaptive threshold value which is level and subband dependent based on analyzing the statistical parameters of subband coefficients. In the utilized thresholding function, which is based on a maximum a posteriori estimate, the modified version of dominant coefficients was estimated by optimal linear interpolation between each coefficient and the mean value of the corresponding subband. Experimental results, on several test images under different noise intensity conditions, show that the proposed algorithm, called OLI-Shrink, yields better peak signal noise ratio and superior visual image quality—measured by universal image quality index—compared to standard denoising methods, especially in the presence of high noise intensity. It also outperforms some of the best state-of-the-art wavelet-based denoising techniques.
机译:提出了一种基于广义高斯分布的图像去噪统计最优自适应小波包阈值函数。它利用Shannon熵将计算有效的多级WP分解应用于噪声图像,以获得最佳树或最佳小波基础。它通过分析子带系数的统计参数来选择一个自适应阈值,该阈值取决于电平和子带。在基于最大后验估计的利用阈值函数中,通过每个系数与相应子带平均值之间的最佳线性插值来估算主导系数的修改版本。在不同噪声强度条件下的多张测试图像上的实验结果表明,与标准降噪方法相比,该算法被称为OLI-Shrink,可产生更好的峰值信号噪声比和更好的视觉图像质量(通过通用图像质量指标衡量)。在高噪声强度的情况下。它还优于一些最佳的基于小波的最新去噪技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号