首页> 外文期刊>Image Processing, IEEE Transactions on >Blind Separation of Image Sources via Adaptive Dictionary Learning
【24h】

Blind Separation of Image Sources via Adaptive Dictionary Learning

机译:通过自适应字典学习盲分离图像源

获取原文
获取原文并翻译 | 示例

摘要

Sparsity has been shown to be very useful in source separation of multichannel observations. However, in most cases, the sources of interest are not sparse in their current domain and one needs to sparsify them using a known transform or dictionary. If such a priori about the underlying sparse domain of the sources is not available, then the current algorithms will fail to successfully recover the sources. In this paper, we address this problem and attempt to give a solution via fusing the dictionary learning into the source separation. We first define a cost function based on this idea and propose an extension of the denoising method in the work of Elad and Aharon to minimize it. Due to impracticality of such direct extension, we then propose a feasible approach. In the proposed hierarchical method, a local dictionary is adaptively learned for each source along with separation. This process improves the quality of source separation even in noisy situations. In another part of this paper, we explore the possibility of adding global priors to the proposed method. The results of our experiments are promising and confirm the strength of the proposed approach.
机译:稀疏性已被证明在多通道观测资料的源分离中非常有用。但是,在大多数情况下,感兴趣的源在其当前域中并不稀疏,并且需要使用已知的变换或字典来稀疏它们。如果没有有关源的基础稀疏域的先验信息,则当前算法将无法成功恢复源。在本文中,我们解决了这个问题,并尝试通过将字典学习融合到源代码分离中来提供解决方案。我们首先基于此思想定义成本函数,并在Elad和Aharon的工作中提出了去噪方法的扩展,以将其最小化。由于这种直接扩展的不切实际,因此我们提出了一种可行的方法。在所提出的分层方法中,针对每个源以及分离来自适应地学习本地字典。即使在嘈杂的情况下,此过程也可以提高源分离的质量。在本文的另一部分中,我们探索了将全局先验添加到所提出的方法中的可能性。我们的实验结果令人鼓舞,并证实了所提出方法的强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号