首页> 外文期刊>Image Processing, IEEE Transactions on >Scale- and Rotation-Invariant Local Binary Pattern Using Scale-Adaptive Texton and Subuniform-Based Circular Shift
【24h】

Scale- and Rotation-Invariant Local Binary Pattern Using Scale-Adaptive Texton and Subuniform-Based Circular Shift

机译:使用尺度自适应Texton和基于次均匀圆位移的尺度和旋转不变局部二值模式

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective scale- and rotation-invariant local binary pattern (LBP) feature for texture classification. A circular neighboring set of an image pixel is defined as a scale-adaptive texton by taking into account the fundamental local structure property of the pixel. The scale space of a texture image is derived by the Laplacian of the Gaussian and then employed to determine the optimal scale of each pixel reflecting the characteristic length of the corresponding structure and determining the radius of the scale-adaptive texton. Different pixels have different optimal scales, resulting in the scale invariance. Contrary to the traditional LBP features that usually ignore global spatial information, the proposed method also defines subuniform patterns of each uniform pattern to improve the discrimination. For each uniform pattern, the subuniform pattern with the maximum statistical value is defined as the dominant orientation subuniform pattern. It is moved to the first column, and the others are circularly shifted. Experimental results demonstrate a good discrimination capability of the proposed scale- and rotation-invariant LBP in texture classification. Particularly, the LBP based on the scale-adaptive texton is promising to be powerful for texture description and scale-invariant texture classification, and the circular shift subuniform LBP can further improve the performance in the rotation-invariant texture classification.
机译:本文提出了一种有效的比例尺和旋转不变的局部二进制图案(LBP)特征用于纹理分类。通过考虑像素的基本局部结构特性,将图像像素的圆形相邻集合定义为缩放自适应纹理。纹理图像的比例空间是由高斯的拉普拉斯算子得出的,然后被用来确定反映相应结构特征长度的每个像素的最佳比例,并确定适应比例的纹理的半径。不同的像素具有不同的最佳比例,导致比例不变。与通常忽略全局空间信息的传统LBP特征相反,提出的方法还定义了每个统一模式的子统一模式,以改善区分度。对于每个均匀图案,将具有最大统计值的子均匀图案定义为主导方向子均匀图案。它被移到第一列,其他的则循环移位。实验结果表明,提出的尺度不变和旋转不变LBP在纹理分类中具有良好的判别能力。特别地,基于尺度自适应的文本的LBP有望在纹理描述和尺度不变的纹理分类方面具有强大的功能,而圆形移位次均匀LBP可以进一步提高旋转不变纹理分类的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号