首页> 外文期刊>Image Processing, IEEE Transactions on >Single Frequency Inverse Obstacle Scattering: A Sparsity Constrained Linear Sampling Method Approach
【24h】

Single Frequency Inverse Obstacle Scattering: A Sparsity Constrained Linear Sampling Method Approach

机译:单频逆障碍物散射:一种稀疏约束线性采样方法

获取原文
获取原文并翻译 | 示例

摘要

The linear sampling method (LSM) offers a qualitative image reconstruction approach, which is known as a viable alternative for obstacle support identification to the well-studied filtered backprojection (FBP), which depends on a linearized forward scattering model. Of practical interest is the imaging of obstacles from sparse aperture far-field data under a fixed single frequency mode of operation. Under this scenario, the Tikhonov regularization typically applied to LSM produces poor images that fail to capture the obstacle boundary. In this paper, we employ an alternative regularization strategy based on constraining the sparsity of the solution's spatial gradient. Two regularization approaches based on the spatial gradient are developed. A numerical comparison to the FBP demonstrates that the new method's ability to account for aspect-dependent scattering permits more accurate reconstruction of concave obstacles, whereas a comparison to Tikhonov-regularized LSM demonstrates that the proposed approach significantly improves obstacle recovery with sparse-aperture data.
机译:线性采样方法(LSM)提供了定性图像重建方法,该方法被认为是对经过充分研究的滤波反投影(FBP)进行障碍物支持识别的可行替代方法,后者依赖于线性正向散射模型。实际感兴趣的是在固定的单频操作模式下根据稀疏孔径远场数据对障碍物进行成像。在这种情况下,通常应用于LSM的Tikhonov正则化会产生无法捕获障碍物边界的不良图像。在本文中,我们基于约束解决方案空间梯度的稀疏性,采用了一种替代的正则化策略。开发了两种基于空间梯度的正则化方法。与FBP的数值比较表明,该新方法解决了与方面有关的散射的能力,可以更准确地重建凹面障碍物,而与Tikhonov规范化的LSM进行比较,则表明,该方法可显着提高稀疏孔径数据的障碍物恢复能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号