首页> 外文期刊>Image Processing, IEEE Transactions on >Correlation-Coefficient-Based Fast Template Matching Through Partial Elimination
【24h】

Correlation-Coefficient-Based Fast Template Matching Through Partial Elimination

机译:通过部分消除的基于相关系数的快速模板匹配

获取原文
获取原文并翻译 | 示例

摘要

Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.
机译:部分计算消除技术通常用于快速模板匹配。在特定的搜索位置,一旦发现该位置无法与已知的最佳匹配位置竞争,就会过早终止计算。由于基于相关性的相似性度量的非单调增长模式,传统上认为部分计算消除技术不适用于加速这些度量。在本文中,我们证明了通过单调公式可以将部分消除技术应用于相关系数,并且我们提出了用于快速模板匹配的基本模式和扩展模式部分相关消除算法。基本模式算法在较小的模板大小上效率更高,而扩展模式在中型和大型模板上速度更快。我们还提出了一种策略,用于决定对给定数据集使用哪种算法。为了达到较高的加速比,消除算法需要对峰值相关值进行初步猜测。我们提出了两种初始化方案,包括用于较大模板的从粗到细方案和用于中小型模板的两阶段技术。我们提出的算法是精确的,即具有详尽的等效精度,并且已与在各种模板尺寸上使用真实图像数据集的现有快速技术进行了比较。尽管实际的加速比取决于数据,但在大多数情况下,我们提出的算法已经比其他算法快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号