首页> 外文期刊>Image Processing, IEEE Transactions on >Bayesian Texture Classification Based on Contourlet Transform and BYY Harmony Learning of Poisson Mixtures
【24h】

Bayesian Texture Classification Based on Contourlet Transform and BYY Harmony Learning of Poisson Mixtures

机译:基于Contourlet变换和泊松混合物BYY和谐学习的贝叶斯纹理分类。

获取原文
获取原文并翻译 | 示例

摘要

As a newly developed 2-D extension of the wavelet transform using multiscale and directional filter banks, the contourlet transform can effectively capture the intrinsic geometric structures and smooth contours of a texture image that are the dominant features for texture classification. In this paper, we propose a novel Bayesian texture classifier based on the adaptive model-selection learning of Poisson mixtures on the contourlet features of texture images. The adaptive model-selection learning of Poisson mixtures is carried out by the recently established adaptive gradient Bayesian Ying-Yang harmony learning algorithm for Poisson mixtures. It is demonstrated by the experiments that our proposed Bayesian classifier significantly improves the texture classification accuracy in comparison with several current state-of-the-art texture classification approaches.
机译:作为使用多尺度和定向滤波器组的小波变换的最新开发的二维扩展,轮廓波变换可以有效地捕获纹理图像的固有几何结构和平滑轮廓,这是纹理分类的主要特征。在本文中,我们基于纹理图像轮廓线特征上的泊松混合物的自适应模型选择学习,提出了一种新颖的贝叶斯纹理分类器。泊松混合物的自适应模型选择学习是通过最近建立的泊松混合物的自适应梯度贝叶斯盈阳和谐学习算法进行的。通过实验证明,与几种当前最新的纹理分类方法相比,我们提出的贝叶斯分类器显着提高了纹理分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号