首页> 外文期刊>Image Processing, IEEE Transactions on >Multilinear Supervised Neighborhood Embedding of a Local Descriptor Tensor for Scene/Object Recognition
【24h】

Multilinear Supervised Neighborhood Embedding of a Local Descriptor Tensor for Scene/Object Recognition

机译:用于场景/对象识别的局部描述符张量的多线性监督邻域嵌入

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose to represent an image as a local descriptor tensor and use a multilinear supervised neighborhood embedding (MSNE) for discriminant feature extraction, which is able to be used for subject or scene recognition. The contributions of this paper include: 1) a novel feature extraction approach denoted as the histogram of orientation weighted with a normalized gradient (NHOG) for local region representation, which is robust to large illumination variation in an image; 2) an image representation framework denoted as the local descriptor tensor, which can effectively combine a moderate amount of local features together for image representation and be more efficient than the popular existing bag-of-feature model; and 3) an MSNE analysis algorithm, which can directly deal with the local descriptor tensor for extracting discriminant and compact features and, at the same time, preserve neighborhood structure in tensor-feature space for subject/scene recognition. We demonstrate the performance advantages of our proposed approach over existing techniques on different types of benchmark database such as a scene data set (i.e., OT8), face data sets (i.e., YALE and PIE), and view-based object data sets (COIL-100 and ETH-80).
机译:在本文中,我们建议将图像表示为局部描述符张量,并使用多线性监督邻域嵌入(MSNE)进行判别特征提取,该方法可用于主题或场景识别。本文的贡献包括:1)一种新颖的特征提取方法,表示为定向直方图,并用归一化梯度(NHOG)加权来表示局部区域,对于图像中的较大照明变化具有鲁棒性; 2)表示为局部描述符张量的图像表示框架,该框架可有效地将适量的局部特征组合在一起以进行图像表示,并且比流行的现有特征包模型更有效; 3)MSNE分析算法,可以直接处理局部描述符张量以提取判别和紧缩特征,同时保留张量特征空间中的邻域结构以用于主题/场景识别。我们在不同类型的基准数据库(例如场景数据集(即OT8),面部数据集(即YALE和PIE)和基于视图的对象数据集(COIL))上证明了我们提出的方法相对于现有技术的性能优势。 -100和ETH-80)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号