首页> 外文期刊>Image Processing, IEEE Transactions on >A Fast Majorize–Minimize Algorithm for the Recovery of Sparse and Low-Rank Matrices
【24h】

A Fast Majorize–Minimize Algorithm for the Recovery of Sparse and Low-Rank Matrices

机译:快速专业化-最小化算法,用于恢复稀疏和低秩矩阵

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel algorithm to recover sparse and low-rank matrices from noisy and undersampled measurements. We pose the reconstruction as an optimization problem, where we minimize a linear combination of data consistency error, nonconvex spectral penalty, and nonconvex sparsity penalty. We majorize the nondifferentiable spectral and sparsity penalties in the criterion by quadratic expressions to realize an iterative three-step alternating minimization scheme. Since each of these steps can be evaluated either analytically or using fast schemes, we obtain a computationally efficient algorithm. We demonstrate the utility of the algorithm in the context of dynamic magnetic resonance imaging (MRI) reconstruction from sub-Nyquist sampled measurements. The results show a significant improvement in signal-to-noise ratio and image quality compared with classical dynamic imaging algorithms. We expect the proposed scheme to be useful in a range of applications including video restoration and multidimensional MRI.
机译:我们介绍了一种新颖的算法,可从嘈杂和欠采样的测量中恢复稀疏和低秩矩阵。我们将重构视为一个优化问题,其中我们将数据一致性误差,非凸频谱损失和非凸稀疏损失的线性组合最小化。我们通过二次表达式对准则中不可微的频谱和稀疏性罚分进行主观化,以实现迭代的三步交替最小化方案。由于这些步骤中的每一个都可以通过分析或使用快速方案进行评估,因此我们获得了一种计算有效的算法。我们展示了该算法在从亚奈奎斯特采样测量中进行动态磁共振成像(MRI)重建的背景下的实用性。结果表明,与经典动态成像算法相比,信噪比和图像质量有了显着改善。我们希望提出的方案在包括视频恢复和多维MRI在内的一系列应用中有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号