首页> 外文期刊>Computers & mathematics with applications >Low-rank and sparse matrices fitting algorithm for low-rank representation
【24h】

Low-rank and sparse matrices fitting algorithm for low-rank representation

机译:低秩表示的低秩和稀疏矩阵拟合算法

获取原文
获取原文并翻译 | 示例

摘要

In real world, especially in the field of pattern recognition, a matrix formed from images, visions, speech sounds or so forth under certain conditions usually subjects to a low-rank subspace structure. Sparse noise, small noise and so on can be eliminated by the low-rank property of this matrix, leading to the well-known low-rank representation problem. At present, existing algorithms for this problem still need to be improved in the aspects of the recovery accuracy of low-rank component and sparse component, the clustering accuracy of subspaces' data and their convergence rate. This paper proposes a low-rank matrix decomposition non-convex optimization extended model without nuclear norm. Motivated by human walking, we combine the direction and step size iterative formula with the alternating direction minimization idea for the sake of decomposing the original optimization model that is difficult to be solved into three comparatively easily solved sub-optimization models. On the basis of these, Low-Rank and Sparse Matrices Fitting Algorithm (LSMF) is presented for the sub-models in this paper, which quickly alternates the search direction matrices and the corresponding step sizes. Theoretically, it is proved that LSMF converges to a stable point of the extended model. In simulation experiments, better results are achieved in the three aspects under appropriate conditions. The face denoising and background/foreground separation further demonstrate the capability of LSMF on handling large-scale and contaminated dataset. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在现实世界中,尤其是在模式识别领域,由图像,视觉,语音等在特定条件下形成的矩阵通常会受到低阶子空间结构的影响。该矩阵的低秩特性可以消除稀疏噪声,小噪声等,从而导致众所周知的低秩表示问题。目前,针对该问题的现有算法在低秩分量和稀疏分量的恢复精度,子空间数据的聚类精度及其收敛速度等方面仍需要改进。提出了一种无核范数的低秩矩阵分解非凸优化扩展模型。在人类步行的激励下,我们将方向和步长迭代公式与交替方向最小化思想结合在一起,以便将难以解决的原始优化模型分解为三个相对容易解决的子优化模型。在此基础上,提出了针对子模型的低秩和稀疏矩阵拟合算法(LSMF),该算法可以快速交替搜索方向矩阵和相应的步长。从理论上讲,证明了LSMF收敛到扩展模型的稳定点。在模拟实验中,在适当的条件下在这三个方面都取得了更好的结果。人脸去噪和背景/前景分离进一步证明了LSMF处理大规模和受污染数据集的能力。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号