首页> 外文期刊>IEEE Transactions on Image Processing >Nonlocal Hierarchical Dictionary Learning Using Wavelets for Image Denoising
【24h】

Nonlocal Hierarchical Dictionary Learning Using Wavelets for Image Denoising

机译:使用小波进行图像去噪的非局部分层字典学习

获取原文
获取原文并翻译 | 示例

摘要

Exploiting the sparsity within representation models for images is critical for image denoising. The best currently available denoising methods take advantage of the sparsity from image self-similarity, pre-learned, and fixed representations. Most of these methods, however, still have difficulties in tackling high noise levels or noise models other than Gaussian. In this paper, the multiresolution structure and sparsity of wavelets are employed by nonlocal dictionary learning in each decomposition level of the wavelets. Experimental results show that our proposed method outperforms two state-of-the-art image denoising algorithms on higher noise levels. Furthermore, our approach is more adaptive to the less extensively researched uniform noise.
机译:利用图像表示模型中的稀疏性对于图像降噪至关重要。当前最好的去噪方法利用了图像自相似性,预学习和固定表示的稀疏性。但是,大多数这些方法在解决高噪声水平或高斯噪声模型以外的问题上仍然存在困难。在本文中,非局部字典学习在小波的每个分解级别上采用小波的多分辨率结构和稀疏性。实验结果表明,在较高的噪声水平下,我们提出的方法优于两种最新的图像去噪算法。此外,我们的方法更适合于研究较少的均匀噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号