首页> 外文期刊>IEEE Transactions on Image Processing >Multiple-Kernel, Multiple-Instance Similarity Features for Efficient Visual Object Detection
【24h】

Multiple-Kernel, Multiple-Instance Similarity Features for Efficient Visual Object Detection

机译:多内核,多实例相似性功能可实现高效的视觉对象检测

获取原文
获取原文并翻译 | 示例

摘要

We propose to use the similarity between the sample instance and a number of exemplars as features in visual object detection. Concepts from multiple-kernel learning and multiple-instance learning are incorporated into our scheme at the feature level by properly calculating the similarity. The similarity between two instances can be measured by various metrics and by using the information from various sources, which mimics the use of multiple kernels for kernel machines. Pooling of the similarity values from multiple instances of an object part is introduced to cope with alignment inaccuracy between object instances. To deal with the high dimensionality of the multiple-kernel multiple-instance similarity feature, we propose a forward feature-selection technique and a coarse-to-fine learning scheme to find a set of good exemplars, hence we can produce an efficient classifier while maintaining a good performance. Both the feature and the learning technique have interesting properties. We demonstrate the performance of our method using both synthetic data and real-world visual object detection data sets.
机译:我们建议使用样本实例与许多示例之间的相似性作为视觉对象检测中的特征。通过适当地计算相似度,将来自多核学习和多实例学习的概念纳入了我们的方案中的功能级别。可以通过各种度量标准以及通过使用来自各种来源的信息来度量两个实例之间的相似性,这可以模拟对内核计算机使用多个内核。引入了来自对象零件的多个实例的相似性值的合并以应对对象实例之间的对齐不正确。为了解决多核多实例相似性特征的高维性,我们提出了一种正向特征选择技术和一种从粗到精的学习方案,以找到一组良好的样本,因此我们可以产生一个有效的分类器,同时保持良好的表现。特征和学习技术都具有有趣的特性。我们使用合成数据和真实世界的视觉对象检测数据集展示了我们方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号