首页> 外文期刊>IEEE Transactions on Image Processing >Multivariate Slow Feature Analysis and Decorrelation Filtering for Blind Source Separation
【24h】

Multivariate Slow Feature Analysis and Decorrelation Filtering for Blind Source Separation

机译:盲源分离的多元慢特征分析和解相关滤波

获取原文
获取原文并翻译 | 示例

摘要

We generalize the method of Slow Feature Analysis (SFA) for vector-valued functions of several variables and apply it to the problem of blind source separation, in particular to image separation. It is generally necessary to use multivariate SFA instead of univariate SFA for separating multi-dimensional signals. For the linear case, an exact mathematical analysis is given, which shows in particular that the sources are perfectly separated by SFA if and only if they and their first-order derivatives are uncorrelated. When the sources are correlated, we apply the following technique called Decorrelation Filtering: use a linear filter to decorrelate the sources and their derivatives in the given mixture, then apply the unmixing matrix obtained on the filtered mixtures to the original mixtures. If the filtered sources are perfectly separated by this matrix, so are the original sources. A decorrelation filter can be numerically obtained by solving a nonlinear optimization problem. This technique can also be applied to other linear separation methods, whose output signals are decorrelated, such as ICA. When there are more mixtures than sources, one can determine the actual number of sources by using a regularized version of SFA with decorrelation filtering. Extensive numerical experiments using SFA and ICA with decorrelation filtering, supported by mathematical analysis, demonstrate the potential of our methods for solving problems involving blind source separation.
机译:我们针对多个变量的矢量值函数推广了慢特征分析(SFA)方法,并将其应用于盲源分离问题,尤其是图像分离问题。通常有必要使用多变量SFA代替单变量SFA来分离多维信号。对于线性情况,给出了精确的数学分析,该分析特别表明,当且仅当源及其一阶导数不相关时,才可以用SFA完美分离源。当来源相关时,我们应用以下称为去相关过滤的技术:使用线性滤波器对给定混合物中的来源及其衍生物进行去相关,然后将在过滤后的混合物上获得的混合矩阵应用于原始混合物。如果过滤后的源被此矩阵完全隔离,则原始源也是如此。解相关滤波器可以通过求解非线性优化问题来数值获得。该技术还可以应用于其他线性分离方法,其输出信号是去相关的,例如ICA。当混合源多于源时,可以使用带去相关过滤的SFA规范化版本来确定源的实际数量。在数学分析的支持下,使用SFA和ICA进行去相关滤波的大量数值实验证明了我们方法解决涉及盲源分离问题的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号