首页> 外文期刊>Image Processing, IEEE Transactions on >Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution
【24h】

Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution

机译:用于多图像超分辨率和单/多图像模糊反卷积的统一盲法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method.
机译:本文首次提出了针对多图像超分辨率(MISR或SR),单图像模糊反卷积(SIBD)和低分辨率(LR)的多图像模糊反卷积(MIBD)的统一盲法)因线性空间不变(LSI)模糊,混叠和加性高斯白噪声(AWGN)而降级的图像。所提出的方法基于相对于未知的高分辨率(HR)图像和模糊的新成本函数的交替最小化(AM)。 HR图像的正则项基于Huber-Markov随机场(HMRF)模型,该模型是利用HR图像的分段平滑特性的一种变分积分。边缘强调平滑操作支持模糊估计过程,该操作通过增强朝向阶梯边缘的强软边缘,同时滤除弱结构,从而提高了模糊估计的质量。逐步更新参数,以便在每次迭代中用于模糊估计的显着边缘的数量增加。为了获得更好的性能,模糊估计是在滤波器域而不是像素域中进行的,即使用LR和HR图像的梯度。模糊的正则化项是高斯(L2范数),它允许在频域中进行快速非迭代优化。通过将上采样和注册过程与优化过程分开,我们可以加快SR重建的处理时间。在合成图像和现实图像上的仿真结果(来自新型计算成像仪)均证实了所提方法的鲁棒性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号