首页> 外文期刊>Image Processing, IEEE Transactions on >Rank Minimization Code Aperture Design for Spectrally Selective Compressive Imaging
【24h】

Rank Minimization Code Aperture Design for Spectrally Selective Compressive Imaging

机译:谱选择性压缩成像的秩最小化代码孔径设计

获取原文
获取原文并翻译 | 示例

摘要

A new code aperture design framework for multiframe code aperture snapshot spectral imaging (CASSI) system is presented. It aims at the optimization of code aperture sets such that a group of compressive spectral measurements is constructed, each with information from a specific subset of bands. A matrix representation of CASSI is introduced that permits the optimization of spectrally selective code aperture sets. Furthermore, each code aperture set forms a matrix such that rank minimization is used to reduce the number of CASSI shots needed. Conditions for the code apertures are identified such that a restricted isometry property in the CASSI compressive measurements is satisfied with higher probability. Simulations show higher quality of spectral image reconstruction than that attained by systems using Hadamard or random code aperture sets.
机译:提出了一种用于多帧代码孔径快照光谱成像(CASSI)系统的新代码孔径设计框架。它旨在优化代码孔径集,以便构造一组压缩频谱测量值,每个测量值都包含来自特定频段子集的信息。引入了CASSI的矩阵表示,可以优化光谱选择代码孔径集。此外,每个代码孔径集形成一个矩阵,以便使用等级最小化来减少所需的CASSI镜头数量。确定代码孔径的条件,以便以较高的概率满足CASSI压缩测量中的受限等距特性。与使用Hadamard或随机代码孔径集的系统相比,仿真显示出频谱图像重建的质量更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号