首页> 外文期刊>Image Processing, IEEE Transactions on >Video Deblurring Algorithm Using Accurate Blur Kernel Estimation and Residual Deconvolution Based on a Blurred-Unblurred Frame Pair
【24h】

Video Deblurring Algorithm Using Accurate Blur Kernel Estimation and Residual Deconvolution Based on a Blurred-Unblurred Frame Pair

机译:基于模糊-非模糊帧对的精确模糊核估计和残差反卷积的视频去模糊算法

获取原文
获取原文并翻译 | 示例

摘要

Blurred frames may happen sparsely in a video sequence acquired by consumer devices such as digital camcorders and digital cameras. In order to avoid visually annoying artifacts due to those blurred frames, this paper presents a novel motion deblurring algorithm in which a blurred frame can be reconstructed utilizing the high-resolution information of adjacent unblurred frames. First, a motion-compensated predictor for the blurred frame is derived from its neighboring unblurred frame via specific motion estimation. Then, an accurate blur kernel, which is difficult to directly obtain from the blurred frame itself, is computed using both the predictor and the blurred frame. Next, a residual deconvolution is applied to both of those frames in order to reduce the ringing artifacts inherently caused by conventional deconvolution. The blur kernel estimation and deconvolution processes are iteratively performed for the deblurred frame. Simulation results show that the proposed algorithm provides superior deblurring results over conventional deblurring algorithms while preserving details and reducing ringing artifacts.
机译:在由诸如数码摄像机和数码相机之类的消费类设备获取的视频序列中,模糊帧可能很少出现。为了避免由于那些模糊帧而造成的视觉上令人讨厌的伪影,本文提出了一种新颖的运动去模糊算法,其中可以利用相邻未模糊帧的高分辨率信息来重建模糊帧。首先,经由特定运动估计从其相邻的未模糊帧中导出针对模糊帧的运动补偿预测器。然后,使用预测器和模糊帧两者来计算难以直接从模糊帧本身获得的精确模糊核。接下来,将残余去卷积应用于这两个帧,以减少由常规去卷积固有地引起的振铃伪影。对于去模糊的帧,迭代地执行模糊核估计和去卷积处理。仿真结果表明,与传统的去模糊算法相比,所提算法具有更好的去模糊效果,同时保留了细节并减少了振铃失真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号