首页> 外文期刊>Image Processing, IEEE Transactions on >Anisotropic Interpolation of Sparse Generalized Image Samples
【24h】

Anisotropic Interpolation of Sparse Generalized Image Samples

机译:稀疏广义图像样本的各向异性插值

获取原文
获取原文并翻译 | 示例

摘要

Practical image-acquisition systems are often modeled as a continuous-domain prefilter followed by an ideal sampler, where generalized samples are obtained after convolution with the impulse response of the device. In this paper, our goal is to interpolate images from a given subset of such samples. We express our solution in the continuous domain, considering consistent resampling as a data-fidelity constraint. To make the problem well posed and ensure edge-preserving solutions, we develop an efficient anisotropic regularization approach that is based on an improved version of the edge-enhancing anisotropic diffusion equation. Following variational principles, our reconstruction algorithm minimizes successive quadratic cost functionals. To ensure fast convergence, we solve the corresponding sequence of linear problems by using multigrid iterations that are specifically tailored to their sparse structure. We conduct illustrative experiments and discuss the potential of our approach both in terms of algorithmic design and reconstruction quality. In particular, we present results that use as little as 2% of the image samples.
机译:实际的图像采集系统通常被建模为连续域预滤波器,然后是理想采样器,在该采样器中,在与设备的脉冲响应进行卷积后获得广义采样。在本文中,我们的目标是从此类样本的给定子集中内插图像。我们将连续重采样作为数据保真度约束,在连续域中表达我们的解决方案。为了使问题更容易解决并确保边缘保留解,我们开发了一种有效的各向异性正则化方法,该方法基于边缘增强各向异性扩散方程的改进版本。遵循变分原理,我们的重建算法将连续的二次成本函数最小化。为了确保快速收敛,我们通过使用专门针对稀疏结构的多重网格迭代来解决线性问题的相应序列。我们进行了说明性实验,并从算法设计和重构质量方面讨论了我们方法的潜力。特别是,我们提出的结果仅使用了2%的图像样本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号