首页> 外文期刊>Image Processing, IEEE Transactions on >Joint Demosaicing and Denoising via Learned Nonparametric Random Fields
【24h】

Joint Demosaicing and Denoising via Learned Nonparametric Random Fields

机译:通过学习的非参数随机场进行联合去马赛克和去噪

获取原文
获取原文并翻译 | 示例

摘要

We introduce a machine learning approach to demosaicing, the reconstruction of color images from incomplete color filter array samples. There are two challenges to overcome by a demosaicing method: 1) it needs to model and respect the statistics of natural images in order to reconstruct natural looking images and 2) it should be able to perform well in the presence of noise. To facilitate an objective assessment of current methods, we introduce a public ground truth data set of natural images suitable for research in image demosaicing and denoising. We then use this large data set to develop a machine learning approach to demosaicing. Our proposed method addresses both demosaicing challenges by learning a statistical model of images and noise from hundreds of natural images. The resulting model performs simultaneous demosaicing and denoising. We show that the machine learning approach has a number of benefits: 1) the model is trained to directly optimize a user-specified performance measure such as peak signal-to-noise ratio (PSNR) or structural similarity; 2) we can handle novel color filter array layouts by retraining the model on such layouts; and 3) it outperforms the previous state-of-the-art, in some setups by 0.7-dB PSNR, faithfully reconstructing edges, textures, and smooth areas. Our results demonstrate that in demosaicing and related imaging applications, discriminatively trained machine learning models have the potential for peak performance at comparatively low engineering effort.
机译:我们介绍了一种机器学习方法来去马赛克,即从不完整的滤色镜阵列样本中重建彩色图像。去马赛克方法要克服两个挑战:1)它需要建模并尊重自然图像的统计信息,以重建自然外观的图像; 2)它应该能够在存在噪声的情况下表现良好。为了促进对当前方法的客观评估,我们引入了适用于图像去马赛克和去噪研究的自然图像的公共地面真理数据集。然后,我们使用这个大数据集来开发用于去马赛克的机器学习方法。我们提出的方法通过学习图像的统计模型和来自数百个自然图像的噪声来解决去马赛克问题。结果模型同时执行去马赛克和去噪。我们证明了机器学习方法具有许多好处:1)训练模型以直接优化用户指定的性能度量,例如峰值信噪比(PSNR)或结构相似性; 2)我们可以通过在这样的布局上重新训练模型来处理新颖的滤色器阵列布局; 3)在某些情况下,其性能优于以前的最新技术,PSNR为0.7 dB,可以忠实地重建边缘,纹理和平滑区域。我们的结果表明,在去马赛克和相关成像应用中,经过严格训练的机器学习模型具有在相对较低的工程量下达到最佳性能的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号