首页> 外文期刊>IEEE Transactions on Image Processing >LBP-Based Edge-Texture Features for Object Recognition
【24h】

LBP-Based Edge-Texture Features for Object Recognition

机译:基于LBP的边缘纹理特征用于对象识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes two sets of novel edge-texture features, Discriminative Robust Local Binary Pattern (DRLBP) and Ternary Pattern (DRLTP), for object recognition. By investigating the limitations of Local Binary Pattern (LBP), Local Ternary Pattern (LTP) and Robust LBP (RLBP), DRLBP and DRLTP are proposed as new features. They solve the problem of discrimination between a bright object against a dark background and vice-versa inherent in LBP and LTP. DRLBP also resolves the problem of RLBP whereby LBP codes and their complements in the same block are mapped to the same code. Furthermore, the proposed features retain contrast information necessary for proper representation of object contours that LBP, LTP, and RLBP discard. Our proposed features are tested on seven challenging data sets: INRIA Human, Caltech Pedestrian, UIUC Car, Caltech 101, Caltech 256, Brodatz, and KTH-TIPS2-a. Results demonstrate that the proposed features outperform the compared approaches on most data sets.
机译:本文提出了两套新颖的边缘纹理特征,即判别性鲁棒局部二进制模式(DRLBP)和三元模式(DRLTP),用于对象识别。通过研究本地二进制模式(LBP),本地三进制模式(LTP)和鲁棒LBP(RLBP)的局限性,提出了DRLBP和DRLTP作为新功能。它们解决了在黑暗背景下明亮物体与LBP和LTP中固有的反之之别的问题。 DRLBP还解决了RLBP的问题,其中LBP代码及其在同一块中的补码被映射到同一代码。此外,提出的功能保留了正确表示LBP,LTP和RLBP丢弃的对象轮廓所必需的对比度信息。我们提议的功能已在七个具有挑战性的数据集上进行了测试:INRIA Human,Caltech行人,UIUC汽车,Caltech 101,Caltech 256,Brodatz和KTH-TIPS2-a。结果表明,建议的功能优于大多数数据集上的比较方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号