首页> 外文期刊>IEEE Transactions on Image Processing >Translation Invariant Directional Framelet Transform Combined With Gabor Filters for Image Denoising
【24h】

Translation Invariant Directional Framelet Transform Combined With Gabor Filters for Image Denoising

机译:平移不变方向小框架变换与Gabor滤波器相结合的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the study of a directional lifting transform for wavelet frames. A nonsubsampled lifting structure is developed to maintain the translation invariance as it is an important property in image denoising. Then, the directionality of the lifting-based tight frame is explicitly discussed, followed by a specific translation invariant directional framelet transform (TIDFT). The TIDFT has two framelets $psi_{1}$, $psi_{2}$ with vanishing moments of order two and one respectively, which are able to detect singularities in a given direction set. It provides an efficient and sparse representation for images containing rich textures along with properties of fast implementation and perfect reconstruction. In addition, an adaptive block-wise orientation estimation method based on Gabor filters is presented instead of the conventional minimization of residuals. Furthermore, the TIDFT is utilized to exploit the capability of image denoising, incorporating the MAP estimator for multivariate exponential distribution. Consequently, the TIDFT is able to eliminate the noise effectively while preserving the textures simultaneously. Experimental results show that the TIDFT outperforms some other frame-based denoising methods, such as contourlet and shearlet, and is competitive to the state-of-the-art denoising approaches.
机译:本文致力于小波框架的定向提升变换的研究。开发了一种非下采样提升结构,以保持平移不变性,因为它是图像降噪的重要属性。然后,明确讨论了基于提升的紧框架的方向性,然后进行了特定的平移不变方向性框架变换(TIDFT)。 TIDFT有两个小框架$ psi_ {1} $,$ psi_ {2} $,其消失力矩分别为二阶和一阶,它们能够检测给定方向集上的奇异点。它为包含丰富纹理的图像提供了快速有效的稀疏表示,并具有快速实现和完美重建的特性。另外,提出了一种基于Gabor滤波器的自适应块方向估计方法,以代替传统的残差最小化方法。此外,TIDFT被用于开发图像降噪功能,并结合了用于多指数分布的MAP估计器。因此,TIDFT能够有效地消除噪声,同时保留纹理。实验结果表明,TIDFT优于其他基于帧的去噪方法,例如轮廓波和剪切波,并且与最新的去噪方法相比具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号