首页> 外文期刊>Image Processing, IEEE Transactions on >SLED: Semantic Label Embedding Dictionary Representation for Multilabel Image Annotation
【24h】

SLED: Semantic Label Embedding Dictionary Representation for Multilabel Image Annotation

机译:SLED:用于多标签图像注释的语义标签嵌入字典表示

获取原文
获取原文并翻译 | 示例

摘要

Most existing methods on weakly supervised image annotation rely on jointly unsupervised feature representation, the components of which are not directly correlated with specific labels. In practical cases, however, there is a big gap between the training and the testing data, say the label combination of the testing data is not always consistent with that of the training. To bridge the gap, this paper presents a semantic label embedding dictionary representation that not only achieves the discriminative feature representation for each label in the image, but also mines the semantic relevance between co-occurrence labels for context information. More specifically, to enhance the discriminative representation of labels, the training data is first divided into a set of overlapped groups by graph shift based on the exclusive label graph. Afterward, given a group of exclusive labels, we try to learn multiple label-specific dictionaries to explicitly decorrelate the feature representation of each label. A joint optimization approach is proposed according to the Fisher discrimination criterion for seeking its solution. Then, to discover the context information hidden in the co-occurrence labels, we explore the semantic relationship between visual words in dictionaries and labels in a multitask learning way with respect to the reconstruction coefficients of the training data. In the annotation stage, with the discriminative dictionaries and exclusive label groups as well as a group sparsity constraint, the reconstruction coefficients of a test image can be easily obtained. Finally, we introduce a label propagation scheme to compute the score of each label for the test image based on its reconstruction coefficients. Experimental results on three challenging data sets demonstrate that our proposed method leads to significant performance gains over existing methods.
机译:现有的大多数关于弱监督图像标注的方法都依赖于联合的非监督特征表示,其组成与特定标签没有直接关联。但是,在实际情况下,培训和测试数据之间存在很大的差距,例如,测试数据的标签组合并不总是与培训的标签组合一致。为了弥合差距,本文提出了一种语义标签嵌入字典表示,该字典表示不仅可以实现图像中每个标签的区分性特征表示,而且还可以为上下文信息挖掘同现标签之间的语义相关性。更具体地,为了增强标签的区分性表示,首先基于排他标签图,通过图移位将训练数据划分为一组重叠的组。然后,给定一组排他标签,我们尝试学习多个特定于标签的词典,以显式去相关每个标签的特征表示。根据Fisher判别准则提出了一种联合优化方法,以寻求解决方案。然后,为了发现隐藏在同现标签中的上下文信息,我们针对训练数据的重构系数,以多任务学习的方式探索字典中视觉单词与标签之间的语义关系。在注释阶段,借助区分字典和排他标签组以及组稀疏性约束,可以轻松获得测试图像的重建系数。最后,我们引入标签传播方案,根据其重构系数为测试图像计算每个标签的分数。在三个具有挑战性的数据集上的实验结果表明,与现有方法相比,我们提出的方法可显着提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号