首页> 外文期刊>Image Processing, IEEE Transactions on >Approximation and Compression With Sparse Orthonormal Transforms
【24h】

Approximation and Compression With Sparse Orthonormal Transforms

机译:稀疏正交变换的逼近和压缩

获取原文
获取原文并翻译 | 示例

摘要

We propose a new transform design method that targets the generation of compression-optimized transforms for next-generation multimedia applications. The fundamental idea behind transform compression is to exploit regularity within signals such that redundancy is minimized subject to a fidelity cost. Multimedia signals, in particular images and video, are well known to contain a diverse set of localized structures, leading to many different types of regularity and to nonstationary signal statistics. The proposed method designs sparse orthonormal transforms (SOTs) that automatically exploit regularity over different signal structures and provides an adaptation method that determines the best representation over localized regions. Unlike earlier work that is motivated by linear approximation constructs and model-based designs that are limited to specific types of signal regularity, our work uses general nonlinear approximation ideas and a data-driven setup to significantly broaden its reach. We show that our SOT designs provide a safe and principled extension of the Karhunen–Loeve transform (KLT) by reducing to the KLT on Gaussian processes and by automatically exploiting non-Gaussian statistics to significantly improve over the KLT on more general processes. We provide an algebraic optimization framework that generates optimized designs for any desired transform structure (multiresolution, block, lapped, and so on) with significantly better -term approximation performance. For each structure, we propose a new prototype codec and test over a database of images. Simulation results show consistent increase in compression and approximation performance compared with conventional methods.
机译:我们提出了一种新的变换设计方法,该方法针对下一代多媒体应用的压缩优化变换的生成。变换压缩背后的基本思想是利用信号内的规则性,从而使冗余度在保真度成本的基础上降到最低。众所周知,多媒体信号,特别是图像和视频,包含各种各样的局部结构,从而导致许多不同类型的规律性和非平稳信号统计。拟议的方法设计稀疏正交变换(SOT),可以自动利用不同信号结构上的规律性,并提供一种确定局部区域最佳表示的自适应方法。不同于早期的工作是受线性逼近构造和基于模型的设计(仅限于特定类型的信号规则性)的激励,我们的工作使用了一般的非线性逼近思想和数据驱动的设置来显着拓宽其范围。我们表明,我们的SOT设计通过将高斯过程的KLT简化为KLT并通过自动利用非高斯统计量来显着改善更一般过程的KLT,从而提供了Karhunen-Loeve变换(KLT)的安全且原则上的扩展。我们提供了一个代数优化框架,该框架可为任何所需的变换结构(多分辨率,块,重叠等)生成优化设计,并具有更好的长期近似性能。对于每种结构,我们提出一个新的原型编解码器,并在图像数据库上进行测试。仿真结果表明,与传统方法相比,压缩和逼近性能不断提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号