首页> 外文期刊>IEEE Transactions on Image Processing >Learning Discriminatively Reconstructed Source Data for Object Recognition With Few Examples
【24h】

Learning Discriminatively Reconstructed Source Data for Object Recognition With Few Examples

机译:学习区分重构源数据以识别对象的例子很少

获取原文
获取原文并翻译 | 示例

摘要

We aim at improving the object recognition with few training data in the target domain by leveraging abundant auxiliary data in the source domain. The major issue obstructing knowledge transfer from source to target is the limited correlation between the two domains. Transferring irrelevant information from the source domain usually leads to performance degradation in the target domain. To address this issue, we propose a transfer learning framework with the two key components, such as discriminative source data reconstruction and dual-domain boosting. The former correlates the two domains via reconstructing source data by target data in a discriminative manner. The latter discovers and delivers only knowledge shared by the target data and the reconstructed source data. Hence, it facilitates recognition in the target. The promising experimental results on three benchmarks of object recognition demonstrate the effectiveness of our approach.
机译:我们的目标是通过利用源域中的大量辅助数据,以目标域中很少的训练数据来改善对象识别。阻碍知识从源到目标转移的主要问题是两个领域之间的相关性有限。从源域传输无关的信息通常会导致目标域的性能下降。为了解决这个问题,我们提出了一个转移学习框架,其中包含两个关键组件,例如判别性源数据重构和双域提升。前者通过判别方式通过目标数据重建源数据来关联两个域。后者仅发现并传递目标数据和重构的源数据共享的知识。因此,它有助于目标的识别。在对象识别的三个基准上有希望的实验结果证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号