首页> 外文期刊>IEEE Transactions on Image Processing >Instance-Aware Hashing for Multi-Label Image Retrieval
【24h】

Instance-Aware Hashing for Multi-Label Image Retrieval

机译:多标签图像检索的实例感知哈希

获取原文
获取原文并翻译 | 示例

摘要

Similarity-preserving hashing is a commonly used method for nearest neighbor search in large-scale image retrieval. For image retrieval, deep-network-based hashing methods are appealing, since they can simultaneously learn effective image representations and compact hash codes. This paper focuses on deep-network-based hashing for multi-label images, each of which may contain objects of multiple categories. In most existing hashing methods, each image is represented by one piece of hash code, which is referred to as semantic hashing. This setting may be suboptimal for multi-label image retrieval. To solve this problem, we propose a deep architecture that learns instance-aware image representations for multi-label image data, which are organized in multiple groups, with each group containing the features for one category. The instance-aware representations not only bring advantages to semantic hashing but also can be used in category-aware hashing, in which an image is represented by multiple pieces of hash codes and each piece of code corresponds to a category. Extensive evaluations conducted on several benchmark data sets demonstrate that for both the semantic hashing and the category-aware hashing, the proposed method shows substantial improvement over the state-of-the-art supervised and unsupervised hashing methods.
机译:保留相似性的哈希是大规模图像检索中最近邻居搜索的常用方法。对于图像检索,基于深度网络的哈希方法很有吸引力,因为它们可以同时学习有效的图像表示形式和紧凑的哈希码。本文着重于针对多标签图像的基于深度网络的哈希,每个图像都可能包含多个类别的对象。在大多数现有的散列方法中,每个图像由一个散列码表示,这被称为语义散列。对于多标签图像检索,此设置可能不是最佳的。为了解决这个问题,我们提出了一种深度体系结构,该体系结构学习多标签图像数据的实例感知图像表示形式,该实例表示形式分为多个组,每个组包含一个类别的特征。实例感知表示不仅为语义哈希带来优势,而且可以用于类别感知哈希,其中图像由多个哈希码表示,每个代码对应一个类别。在几个基准数据集上进行的广泛评估表明,对于语义哈希和类别感知哈希,所提出的方法均显示出相对于最新的有监督和无监督哈希方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号